Bias-robust L-estimators of a scale parameter

被引:2
|
作者
Collins, JR [1 ]
机构
[1] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
关键词
robust estimation; L-estimators; scale parameter; minimax asymptotic bias; gross error sensitivity;
D O I
10.1080/0233188031000078015
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We derive optimal bias-robust L-estimators of a scale parameter a based on random samples from F(((.)-theta)/sigma), where theta and sigma are unknown and F is an unknown member of a epsilon-contaminated neighborhood of a fixed symmetric error distribution F-0. Within a very general class S of L-estimators which are Fisher-consistent at F0, we solve for: (i) the estimator with minimax asymptotic bias over the epsilon-contamination neighborhood; and (ii) the estimator with minimum gross error sensitivity at F-0 [the limiting case of (i) as epsilon --> 0]. The solutions to problems (i) and (ii) are shown, using a generalized method of moment spaces, to be mixtures of at most two interquantile ranges. A graphical method is presented for finding the optimal bias-robust solutions, and examples are given.
引用
收藏
页码:287 / 303
页数:17
相关论文
共 50 条