Classification of audio radar signals using radial basis function neural networks

被引:34
|
作者
McConaghy, T [1 ]
Leung, H
Bossé, É
Varadan, V
机构
[1] Analog Design Automat Inc, Ottawa, ON K2P 2C2, Canada
[2] Univ Calgary, Dept Elect & Comp Engn, Calgary, AB T2N 14N, Canada
[3] Def Res & Dev Canada, Decis Support Technol Sect, Valcartier, PQ G3J 1X5, Canada
[4] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
关键词
audio signal; classification; neural net; radar; radial basis function;
D O I
10.1109/TIM.2003.820450
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Radial basis function (RBF) neural networks are used to classify real-life audio radar signals that are collected by a ground surveillance radar mounted on a tank. Currently, a human operator is required to operate the radar system to discern among signals bouncing off tanks, vehicles; planes, and so on. The objective of this project is to investigate the possibility of using a neural network to perform this target recognition task, with the aim of reducing the number of personnel required in a tank. Different signal classification methods in the neural net literature are considered. The first method employs a linear autoregressive (AR) model to extract linear features of the audio data, and then perform classification on these features, i.e, the AR coefficients. AR coefficient estimations based on least squares and higher order statistics are considered in this study. The second approach uses nonlinear predictors to model the audio data and then classifies the signals according to the prediction errors. The real-life audio radar data set used here was collected by an AN/PPS-15 ground surveillance radar and consists of 13 different target classes, which include men marching, a man walking, airplanes, a man crawling, and boats, etc. It is found that each classification method has some classes which are difficult to classify. Overall, the AR feature extraction approach is most effective and has a correct classification rate of 88% for the training data and 67% for data not used for training.
引用
收藏
页码:1771 / 1779
页数:9
相关论文
共 50 条
  • [1] Radar target classification based on radial basis function and modified radial basis function networks
    Liu, GS
    Wang, YH
    Yang, CL
    Zhou, DQ
    [J]. ICR '96 - 1996 CIE INTERNATIONAL CONFERENCE OF RADAR, PROCEEDINGS, 1996, : 208 - 211
  • [2] Classification of infrasound events using radial basis function neural networks
    Ham, FM
    Rekab, K
    Park, S
    Acharyya, R
    Lee, YC
    [J]. PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 2649 - 2654
  • [3] PAPR reduction of OFDM signals using radial basis function neural networks
    Sohn, Insoo
    Shin, Jaeho
    [J]. 2006 10TH INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY, VOLS 1 AND 2, PROCEEDINGS, 2006, : 1170 - +
  • [4] Protein sequences classification using Radial Basis Function (RBF) neural networks
    Wang, DH
    Lee, NK
    Dillon, TS
    Hoogenraad, NJ
    [J]. ICONIP'02: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING: COMPUTATIONAL INTELLIGENCE FOR THE E-AGE, 2002, : 764 - 768
  • [5] Squeak and rattle noise classification using radial basis function neural networks
    Pogorilyi, Oleksandr
    Fard, Mohammad
    Davy, John
    [J]. NOISE CONTROL ENGINEERING JOURNAL, 2020, 68 (04) : 283 - 293
  • [6] Texture image classification using modular radial basis function neural networks
    Chang, Chuan-Yu
    Wang, Hung-Jen
    Fu, Shih-Yu
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2010, 19 (01)
  • [7] A Radial Basis Function Neural Network Model for Classification of Epilepsy Using EEG Signals
    Kezban Aslan
    Hacer Bozdemir
    Cenk Şahin
    Seyfettin Noyan Oğulata
    Rızvan Erol
    [J]. Journal of Medical Systems, 2008, 32 : 403 - 408
  • [8] A radial basis function neural network model for classification of epilepsy using EEG signals
    Aslan, Kezban
    Bozdemir, Hacer
    Sahin, Cenk
    Ogulata, Seyfettin Noyan
    Erol, Rizvan
    [J]. JOURNAL OF MEDICAL SYSTEMS, 2008, 32 (05) : 403 - 408
  • [9] Hierarchical radial basis function neural networks for classification problems
    Chen, Yuehui
    Peng, Lizhi
    Abraham, Ajith
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2006, PT 1, 2006, 3971 : 873 - 879
  • [10] A classification technique based on radial basis function neural networks
    Sarimveis, H
    Doganis, P
    Alexandridis, A
    [J]. ADVANCES IN ENGINEERING SOFTWARE, 2006, 37 (04) : 218 - 221