Universal nonequilibrium quantum dynamics in imaginary time

被引:75
|
作者
De Grandi, C. [1 ]
Polkovnikov, A. [1 ]
Sandvik, A. W. [1 ]
机构
[1] Boston Univ, Dept Phys, Boston, MA 02215 USA
基金
美国国家科学基金会;
关键词
MONTE-CARLO-SIMULATION; PHASE-TRANSITION; MODEL;
D O I
10.1103/PhysRevB.84.224303
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose a method to study dynamical response of a quantum system by evolving it with an imaginarytime-dependent Hamiltonian. The leading nonadiabatic response of the system driven to a quantum-critical point is universal and characterized by the same exponents in real and imaginary time. For a linear quench protocol, the fidelity susceptibility and the geometric tensor naturally emerge in the response functions. Beyond linear response, we extend the finite-size scaling theory of quantum phase transitions to nonequilibrium setups. This allows, e. g., for studies of quantum phase transitions in systems of fixed finite size by monitoring expectation values as a function of the quench velocity. Nonequilibrium imaginary-time dynamics is also amenable to quantum Monte Carlo (QMC) simulations, with a scheme that we introduce here and apply to quenches of the transverse-field Ising model to quantum-critical points in one and two dimensions. The QMC method is generic and can be applied to a wide range of models and nonequilibrium setups.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Nonequilibrium Dynamics of Deconfined Quantum Critical Point in Imaginary Time
    Shu, Yu-Rong
    Jian, Shao-Kai
    Yin, Shuai
    [J]. PHYSICAL REVIEW LETTERS, 2022, 128 (02)
  • [2] Universal short-time quantum critical dynamics in imaginary time
    Yin, Shuai
    Mai, Peizhi
    Zhong, Fan
    [J]. PHYSICAL REVIEW B, 2014, 89 (14)
  • [3] Universal imaginary-time critical dynamics on a quantum computer
    Zhang, Shi-Xin
    Yin, Shuai
    [J]. PHYSICAL REVIEW B, 2024, 109 (13)
  • [4] Measuring the imaginary-time dynamics of quantum materials
    Lederer, S.
    Jost, D.
    Boehm, T.
    Hackl, R.
    Berg, E.
    Kivelson, S. A.
    [J]. PHILOSOPHICAL MAGAZINE, 2020, 100 (19) : 2477 - 2490
  • [5] Multidimensional Quantum Trajectory Dynamics in Imaginary Time with Approximate Quantum Potential
    Garashchuk, Sophya
    Vazhappilly, Tijo
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (48): : 20595 - 20602
  • [6] Imaginary-time formulation of steady-state nonequilibrium in quantum dot models
    Han, J. E.
    [J]. PHYSICAL REVIEW B, 2010, 81 (24)
  • [7] Quantum trajectory dynamics in imaginary time with the momentum-dependent quantum potential
    Garashchuk, Sophya
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (01):
  • [8] Real-time nonequilibrium dynamics of quantum glassy systems
    Cugliandolo, LF
    Lozano, G
    [J]. PHYSICAL REVIEW B, 1999, 59 (02): : 915 - 942
  • [9] Universal aspects of nonequilibrium currents in a quantum dot
    Doyon, Benjamin
    Andrei, Natan
    [J]. PHYSICAL REVIEW B, 2006, 73 (24)
  • [10] Nonequilibrium dynamics of quantum tunneling
    Hirota, K
    [J]. PHYSICAL REVIEW D, 2000, 61 (12)