Food availability and feeding responses of the green mussel Perna viridis were investigated for two complete tidal cycles during both spring and neap tides. Temporal changes in total particulate matter (TPM), particulate inorganic matter (PIM) and particulate organic matter (POM), were smaller during neap than spring tides. Seston characteristics at different times of a tidal cycle were compared for both spring and neap tides. Only during spring tides were TPM and PIM significantly higher at high tides while POM remained relatively constant (P>0.05). The clearance rate of the mussels underwent temporal variations with tides, and was a negative power function of TPM and a positive linear function off (organic content), during both spring and neap tides. f was the key factor influencing filtration rate, organic ingestion rate, absorption rate and absorption efficiency. Ail feeding rates increased linearly with increases in organic content. Pseudofaeces were produced only during spring but not neap tides. Feeding rates and absorption efficiency were highest at low and lowest at high tides (P<0.01). There was no significant temporal change in the wet weight and protein content of the crystalline style with the tidal regime. For the digestive gland, ol-amylase activity was higher at spring than at neap tides, and higher during high tides in a tidal cycle. The digestive gland cellulase activity did not change significantly with the tides. For the crystalline style, both the activity of cellulase and a-amylase were not significantly different (P>0.05) between spring and neap tides. Tidal rhythms in feeding and digestion in this species were likely controlled by temporal variations in food availability in the seawater. By adjusting feeding rates and enzymatic activities, absorption in Perna viridis remained constant, irrespective of the changes in food availability. (C) 2001 Elsevier Science B.V. All rights reserved.