Bioenergy Generation from Municipal Solid Waste and Glycerin Waste: Population Dynamics

被引:4
|
作者
Zahedi, S. [1 ]
Garcia-Morales, J. L. [1 ]
Sales, D. [1 ]
Solera, R. [1 ]
机构
[1] Univ Cadiz, Dept Environm Technol, Fac Marine & Environm Sci CASEM, Pol Rio San Pedro S-N, Puerto Real 11510, Cadiz, Spain
关键词
THERMOPHILIC ANAEROBIC-DIGESTION; MESOPHILIC CO-DIGESTION; HYDROGEN-PRODUCTION; ORGANIC FRACTION; PROPIONIBACTERIUM-ACIDIPROPIONICI; MICROBIAL COMMUNITY; METHANE PRODUCTION; BIOGAS PRODUCTION; INDUSTRIAL-WASTE; ACTIVATED-SLUDGE;
D O I
10.1021/acs.energyfuels.7b01526
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper studies the microbial community, effluent characteristics, and bioenergy generation (hydrogen and methane production) in a two-phase dry-thermophilic (55 degrees C) anaerobic codigestion process treating actual municipal solid waste (20% solid content) and biodiesel waste (glycerin waste, 1% v/v). Four different hydraulic retention times (from 11.5 to 4.5 d) and four organic loading rates (from 8.2 to 21.1 g VS/L/d) were studied to identify optimal conditions (maximum values of biogas and microbial activity). Optimal conditions (2.6 +/- 0.3 L H-2/L/d, 3.4 +/- 0.3 L CH4/L/d, and 109 9 X 10(-13) L CH4/ cell/d) were obtained at 5.9 d HRT. Fermentation end products yield propionic acid as the major product in the secondary effluent. The average values of the ratios of Eubacteria/Archaea and acetogens/hydrolytic-acidogenic bacteria were respectively 83:17 and 30:53 in the first phase (1.5 d HRT) and 76:24 and 39:37 in the second phase (4.4 d HRT).
引用
收藏
页码:9550 / 9556
页数:7
相关论文
共 50 条
  • [1] Municipal Solid Waste Generation Trend and Bioenergy Recovery Potential: A Review
    Darmey, James
    Ahiekpor, Julius Cudjoe
    Narra, Satyanarayana
    Achaw, Osei-Wusu
    Ansah, Herbert Fiifi
    Chen, Wei-Hsin
    [J]. ENERGIES, 2023, 16 (23)
  • [2] Technological pathways for bioenergy generation from municipal solid waste: Renewable energy option
    Dabe, Satish J.
    Prasad, Poonam J.
    Vaidya, A. N.
    Purohit, H. J.
    [J]. ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2019, 38 (02) : 654 - 671
  • [3] A technical review of bioenergy and resource recovery from municipal solid waste
    Nanda, Sonil
    Berruti, Franco
    [J]. JOURNAL OF HAZARDOUS MATERIALS, 2021, 403
  • [4] Social sustainability of treatment technologies for bioenergy generation from the municipal solid waste using best worst method
    Alidoosti, Zahra
    Sadegheih, Ahmad
    Govindan, Kannan
    Pishvaee, Mir Saman
    Mostafaeipour, Ali
    Hossain, Abul Kalam
    [J]. JOURNAL OF CLEANER PRODUCTION, 2021, 288
  • [5] System Dynamics Model for Municipal Solid Waste Generation System in Huangshi
    Dai, F.
    [J]. INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENVIRONMENTAL ENGINEERING (CSEE 2015), 2015, : 1249 - 1254
  • [6] Demand gap analysis of municipal solid waste landfill in Beijing: Based on the municipal solid waste generation
    Liu, Bingchun
    Zhang, Lei
    Wang, Qingshan
    [J]. WASTE MANAGEMENT, 2021, 134 : 42 - 51
  • [7] Heat generation in municipal solid waste landfills
    Yesiller, N
    Hanson, JL
    Liu, WL
    [J]. JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 2005, 131 (11) : 1330 - 1344
  • [8] Modelling municipal solid waste generation: A review
    Beigl, Peter
    Lebersorger, Sandra
    Salhofer, Stefan
    [J]. WASTE MANAGEMENT, 2008, 28 (01) : 200 - 214
  • [9] Determinants of municipal solid waste generation in India
    Ponnaluru, S. S.
    [J]. WASTE MANAGEMENT, 2016, 55 : III - III
  • [10] Municipal solid waste generation in Kathmandu, Nepal
    Dangi, Mohan B.
    Pretz, Christopher R.
    Urynowicz, Michael A.
    Gerow, Kenneth G.
    Reddy, J. M.
    [J]. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2011, 92 (01) : 240 - 249