Probability distributions produced by the cross-entropy loss for ordinal classification problems can possess undesired properties. We propose a straightforward technique to constrain discrete ordinal probability distributions to be unimodal via the use of the Poisson and binomial probability distributions. We evaluate this approach in the context of deep learning on two large ordinal image datasets, obtaining promising results.
机构:
Harvard Univ, Harvard Med Sch, Beth Israel Deaconess Med Ctr, Cambridge, MA 02138 USAHarvard Univ, Harvard Med Sch, Beth Israel Deaconess Med Ctr, Cambridge, MA 02138 USA
Fan, Fangfang
Kong, Lingsheng
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, CIOMP, Beijing, Peoples R ChinaHarvard Univ, Harvard Med Sch, Beth Israel Deaconess Med Ctr, Cambridge, MA 02138 USA
Kong, Lingsheng
Diao, Zhihui
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, CIOMP, Beijing, Peoples R ChinaHarvard Univ, Harvard Med Sch, Beth Israel Deaconess Med Ctr, Cambridge, MA 02138 USA
Diao, Zhihui
Xie, Wanqing
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Harvard Med Sch, Beth Israel Deaconess Med Ctr, Cambridge, MA 02138 USAHarvard Univ, Harvard Med Sch, Beth Israel Deaconess Med Ctr, Cambridge, MA 02138 USA
Xie, Wanqing
Lu, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Harvard Med Sch, Beth Israel Deaconess Med Ctr, Cambridge, MA 02138 USAHarvard Univ, Harvard Med Sch, Beth Israel Deaconess Med Ctr, Cambridge, MA 02138 USA
Lu, Jun
You, Jane
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Comp, Hong Kong, Peoples R ChinaHarvard Univ, Harvard Med Sch, Beth Israel Deaconess Med Ctr, Cambridge, MA 02138 USA