To quicken the process for high global warming potential (GWP) working fluid replacement for organic Rankine cycle (ORC) systems, a thermo-economic evaluation of low GWP fluid R1233zd(E) as an R245fa alternative has been performed in comparison with other natural fluids n-Pentane, Isopentane, and Isobutane for geothermal applications. The heat source water mass flow rate remains constant and 5 K pinch point is set for both evaporator side and condenser side. All working fluids have a close net thermal efficiency within 2%. Increasing the heat source from 120 degrees C to 160 degrees C gives a more than 20% efficiency rise. The low critical temperature of Isobutane limits its application for 160 degrees C heat source. R1233zd(E) displays a close mass flow rate (within 2%) from R245fa and others exhibit more than 40% flow rate reduction. The component level performance has also been investigated in this study. All alternatives exhibit a lower evaporator side (evaporator and preheater) heat transfer area than baseline R245fa, and a slightly higher condenser side (condenser and desuperheater) heat transfer area. For turbine performance, R245fa displays the highest volume flow ratio, indicating a significant change of the rotor blade height should be made between the inlet and outlet point for the expansion process. R1233zd(E) displays similar to 10% increase for turbine size parameter from baseline, n-Pentane shows similar to 22% rise, Isopentane exhibits similar to 11% rise, while Isobutane presents 32% decrease, respectively. In general, R1233zd(E) only exhibits similar to 2.3% higher specific investment cost than R245fa, while n-Pentane and Isopentane exhibit more than 15% cost rise. Thus, from the thermo-economic scale with an extended application range, R1233zd(E) exhibits a better overall performance index when compared with other R245fa alternatives and can be serviced as promising candidate to replace R245fa.