On Quantum Hermite-Hadamard Inequalities for Differentiable Convex Functions

被引:0
|
作者
Kara, Hasan [1 ]
Ali, Muhammad [2 ]
Budak, Huseyin [1 ]
机构
[1] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Turkey
[2] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R China
关键词
Fejer type inclusions; convex function; interval-valued functions; MIDPOINT-TYPE INEQUALITIES; INTEGRAL-INEQUALITIES; OPERATORS;
D O I
10.2298/FIL2205477K
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish some new quantum Hermite-Hadamard type inequalities for differentiable convex functions by using the q(kappa 2)-quantum integral. The results presented in this paper extend the results of Bermudo et al. (On q-Hermite-Hadamard inequalities for general convex functions, Acta Mathematica Hungarica, 2020, 162, 363-374). Finally, we give some examples to show validation of new results of this paper.
引用
收藏
页码:1477 / 1486
页数:10
相关论文
共 50 条
  • [1] QUANTUM HERMITE-HADAMARD INEQUALITIES FOR DOUBLE INTEGRAL AND q-DIFFERENTIABLE CONVEX FUNCTIONS
    Prabseang, Julalak
    Nonlaopon, Kamsing
    Tariboon, Jessada
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2019, 13 (03): : 675 - 686
  • [2] SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR DIFFERENTIABLE CONVEX FUNCTIONS AND APPLICATIONS
    Xi, Bo-Yan
    Qi, Feng
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2013, 42 (03): : 243 - 257
  • [3] Hermite-Hadamard Fractional Inequalities for Differentiable Functions
    Samraiz, Muhammad
    Perveen, Zahida
    Rahman, Gauhar
    Khan, Muhammad Adil
    Nisar, Kottakkaran Sooppy
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (02)
  • [4] ON THE REFINEMENT OF QUANTUM HERMITE-HADAMARD INEQUALITIES FOR CONTINUOUS CONVEX FUNCTIONS
    Prabseang, Julalak
    Nonlaopon, Kamsing
    Ntouyas, Sotiris K.
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (03): : 875 - 885
  • [5] Some Quantum Estimates Of Hermite-Hadamard Inequalities For φ-Convex Functions
    Rangel-Oliveros, Yenny
    Nwaeze, Eze R.
    Khan, Muhammad Adil
    [J]. APPLIED MATHEMATICS E-NOTES, 2022, 22 : 232 - 251
  • [6] SOME QUANTUM ESTIMATES OF HERMITE-HADAMARD INEQUALITIES FOR CONVEX FUNCTIONS
    Liu, Wenjun
    Zhuang, Hefeng
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2017, 7 (02): : 501 - 522
  • [7] HERMITE-HADAMARD INEQUALITIES FOR DIFFERENTIABLE p-CONVEX FUNCTIONS USING HYPERGEOMETRIC FUNCTIONS
    Noor, Muhammad Aslam
    Awan, Muhammad Uzair
    Mihai, Marcela V.
    Noor, Khalida Inayat
    [J]. PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2016, 100 (114): : 251 - 257
  • [8] On some inequalities related to fractional Hermite-Hadamard type for differentiable convex functions
    Budak, Huseyin
    Kara, Hasan
    Ali, Muhammad Aamir
    Kiris, Mehmet Eyup
    [J]. ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2021, 48 (02): : 222 - 233
  • [9] Hermite-Hadamard inequalities for generalized convex functions
    Bessenyei M.
    Páles Z.
    [J]. aequationes mathematicae, 2005, 69 (1-2) : 32 - 40
  • [10] Quantum Inequalities of Hermite-Hadamard Type for r-Convex Functions
    You, Xuexiao
    Kara, Hasan
    Budak, Huseyin
    Kalsoom, Humaira
    [J]. JOURNAL OF MATHEMATICS, 2021, 2021