A new smoothing method for solving nonlinear complementarity problems

被引:14
|
作者
Zhu, Jianguang [1 ]
Hao, Binbin [2 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
[2] China Univ Petr, Coll Sci, Qingdao 266555, Peoples R China
来源
OPEN MATHEMATICS | 2019年 / 17卷
基金
美国国家科学基金会;
关键词
Nonlinear complementarity problems; Smoothing function; Smoothing method; Global convergence; Quadratic convergence; LEVENBERG-MARQUARDT METHOD; NEWTON METHOD; CONTINUATION METHODS; ALGORITHM; ORDER; CONVERGENCE;
D O I
10.1515/math-2019-0011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a new improved smoothing Newton algorithm for the nonlinear complementarity problem was proposed. This method has two-fold advantages. First, compared with the classical smoothing Newton method, our proposed method needn't nonsingular of the smoothing approximation function; second, the method also inherits the advantage of the classical smoothing Newton method, it only needs to solve one linear system of equations at each iteration. Without the need of strict complementarity conditions and the assumption of P-0 property, we get the global and local quadratic convergence properties of the proposed method. Numerical experiments show that the efficiency of the proposed method.
引用
收藏
页码:104 / 119
页数:16
相关论文
共 50 条
  • [1] A New Smoothing Conjugate Gradient Method for Solving Nonlinear Nonsmooth Complementarity Problems
    Chu, Ajie
    Du, Shouqiang
    Su, Yixiao
    [J]. ALGORITHMS, 2015, 8 (04): : 1195 - 1209
  • [2] A NEW SMOOTHING NONMONOTONE TRUST REGION METHOD FOR SOLVING NONLINEAR COMPLEMENTARITY PROBLEMS
    Ji, Ying
    Wang, Tienan
    Li, Yijun
    Zhou, Yong
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2014, 40 (01) : 31 - 60
  • [3] A local Jacobian smoothing method for solving Nonlinear Complementarity Problems
    Arenas, Favian
    Martinez, Hector Jairo
    Perez, Rosana
    [J]. UNIVERSITAS SCIENTIARUM, 2020, 25 (01) : 149 - 174
  • [4] A new filter method for solving nonlinear complementarity problems
    Long, Jun
    Ma, Changfeng
    Nie, Puyan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 185 (01) : 705 - 718
  • [5] A Smoothing Newton method for Nonlinear Complementarity Problems
    Feng, Ning
    Tian, Zhi-yuan
    Qu, Xin-lei
    [J]. SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS II, PTS 1 AND 2, 2014, 475-476 : 1090 - 1093
  • [6] A smoothing Newton method for nonlinear complementarity problems
    Tang, Jingyong
    Dong, Li
    Zhou, Jinchuan
    Fang, Liang
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2013, 32 (01): : 107 - 118
  • [7] SOLVING NONLINEAR COMPLEMENTARITY PROBLEM BY A SMOOTHING HOMOTOPY METHOD
    Fan, Xiaona
    Xu, Tingting
    Gao, Furong
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (01): : 51 - 63
  • [8] A family of new smoothing functions and a nonmonotone smoothing Newton method for the nonlinear complementarity problems
    Zhu J.
    Liu H.
    Liu C.
    [J]. Journal of Applied Mathematics and Computing, 2011, 37 (1-2) : 647 - 662
  • [9] A nonmonotone smoothing Newton algorithm for solving nonlinear complementarity problems
    Hu, Sheng-Long
    Huang, Zheng-Hai
    Wang, Ping
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2009, 24 (03): : 447 - 460
  • [10] A new smoothing quasi-Newton method for nonlinear complementarity problems
    Ma, CF
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2005, 171 (02) : 807 - 823