Supersymmetry of the chiral de Rham complex

被引:21
|
作者
Ben-Zvi, David [1 ]
Heluani, Reimundo [2 ]
Szczesny, Matthew [3 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
[3] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA
基金
美国国家科学基金会;
关键词
chiral de Rham; hyperkahler;
D O I
10.1112/S0010437X07003223
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a superfield formulation of the chiral de Rham complex (CDR), as introduced by Malikov, Schechtman and Vaintrob in 1999, in the setting of a general smooth manifold, and use it to endow CDR with superconformal structures of geometric origin. Given a Riemannian metric, we construct an N = I structure on CDR, (action of the N = 1 super-Virasoro, or Neveu-Schwarz, algebra). If the metric is Kahler, and the manifold Ricci-flat, this is augmented to all N = 2 structure. Finally, if the manifold is hyperkahler, we obtain an N = 4 structure. The superconformal structures are constructed directly from the Levi-Civita connection. These structures provide an analog for CDR, of the extended supersymmetries of nonlinear sigma-models.
引用
收藏
页码:503 / 521
页数:19
相关论文
共 50 条
  • [1] Supersymmetry of the Chiral de Rham Complex 2: Commuting Sectors
    Heluani, Reimundo
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (06) : 953 - 987
  • [2] Chiral de Rham Complex
    Fyodor Malikov
    Vadim Schechtman
    Arkady Vaintrob
    [J]. Communications in Mathematical Physics, 1999, 204 : 439 - 473
  • [3] Chiral de Rham complex
    Malikov, F
    Schechtman, V
    Vaintrob, A
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 204 (02) : 439 - 473
  • [4] Chiral de rham complex and orbifolds
    Frenkel, Edward
    Szczesny, Matthew
    [J]. JOURNAL OF ALGEBRAIC GEOMETRY, 2007, 16 (04) : 599 - 624
  • [5] The Global Sections of the Chiral de Rham Complex on a Kummer Surface
    Song, Bailin
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (14) : 4271 - 4296
  • [6] Chiral de Rham Complex on Riemannian Manifolds and Special Holonomy
    Joel Ekstrand
    Reimundo Heluani
    Johan Källén
    Maxim Zabzine
    [J]. Communications in Mathematical Physics, 2013, 318 : 575 - 613
  • [7] CHIRAL DE RHAM COMPLEX OVER LOCALLY COMPLETE INTERSECTIONS
    Malikov, Fyodor
    Schechtman, Vadim
    [J]. MOSCOW MATHEMATICAL JOURNAL, 2015, 15 (02) : 353 - 372
  • [8] T-Duality and the Exotic Chiral de Rham Complex
    Linshaw, Andrew
    Mathai, Varghese
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 385 (02) : 1133 - 1161
  • [9] T-Duality and the Exotic Chiral de Rham Complex
    Andrew Linshaw
    Varghese Mathai
    [J]. Communications in Mathematical Physics, 2021, 385 : 1133 - 1161
  • [10] Chiral de Rham Complex on Riemannian Manifolds and Special Holonomy
    Ekstrand, Joel
    Heluani, Reimundo
    Kallen, Johan
    Zabzine, Maxim
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 318 (03) : 575 - 613