Harvesting image databases from the web

被引:0
|
作者
Schroff, F. [1 ]
Criminisi, A. [2 ]
Zisserman, A. [3 ]
机构
[1] Univ Oxford, San Diego, CA 92093 USA
[2] Microsoft Res, Cambridge, England
[3] Univ Oxford, Dept Engn Sci, Oxford, England
基金
欧洲研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The objective of this work(1) is to automatically generate a large number of images for a specified object class (for example, penguin). A multi-modal approach employing both text, meta data and visual features is used to gather many, high-quality images from the web. Candidate images are obtained by a text based web search querying on the object identifier (the word penguin). The web pages and the images they contain are down-loaded The task is then to remove irrelevant images and re-rank the remainder First, the images are re-ranked using a Bayes posterior estimator trained on the text surrounding the image and meta data features (such as the image alternative tag, image title tag, and image filename). No visual information is used at this stage. Second, the top-ranked images are used as (noisy) training data and a SVM visual classifier is learnt to improve the ranking further The principal novelty is in combining text/meta-data and visual features in order to achieve a completely automatic ranking of the images. Examples are given for a selection of animals (e.g. camels, sharks, penguins), vehicles (cars, airplanes, bikes) and other classes (guitar wristwatch), totalling 18 classes. The results are assessed by precision/recall curves on ground truth annotated data and by comparison to previous approaches including those of Berg et al. [5] (on an additional six classes) and Fergus et al. [9].
引用
收藏
页码:2120 / +
页数:2
相关论文
共 50 条
  • [1] Harvesting Image Databases from the Web
    Schroff, Florian
    Criminisi, Antonio
    Zisserman, Andrew
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (04) : 754 - 766
  • [2] Harvesting models from web 2.0 databases
    Diaz, Oscar
    Puente, Gorka
    Canovas Izquierdo, Javier Luis
    Garcia Molina, Jesus
    [J]. SOFTWARE AND SYSTEMS MODELING, 2013, 12 (01): : 15 - 34
  • [3] Harvesting models from web 2.0 databases
    Oscar Díaz
    Gorka Puente
    Javier Luis Cánovas Izquierdo
    Jesús García Molina
    [J]. Software & Systems Modeling, 2013, 12 : 15 - 34
  • [4] Harvesting Large-Scale Weakly-Tagged Image Databases from the Web
    Fan, Jianping
    Shen, Yi
    Zhou, Ning
    Gao, Yuli
    [J]. 2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 802 - 809
  • [5] Learning concept templates from web images to query personal image databases
    Wu, Yi
    Bouguet, Jean-Yves
    Nefian, Ara
    Kozintsev, Igor V.
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-5, 2007, : 1986 - 1989
  • [6] Automatic Categorization of Image Databases using Web Folksonomies
    Capasso, Pasquale
    Chianese, Angelo
    Moscato, Vincenzo
    Penta, Antonio
    Picariello, Antonio
    [J]. ISM: 2008 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA, 2008, : 685 - 690
  • [7] Rank Discovery From Web Databases
    Thirumuruganathan, Saravanan
    Zhang, Nan
    Das, Gautam
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2013, 6 (13): : 1582 - 1593
  • [8] An architecture for streamlining the implementation of biomedical text/image databases on the Web
    Bopf, M
    Coleman, T
    Long, LR
    Antani, S
    Thoma, GR
    Jeronimo, J
    Schiffman, M
    [J]. 17TH IEEE SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, PROCEEDINGS, 2004, : 563 - 568
  • [9] Presenting interactive image databases on the Web using Java']Java
    Wertheim, SL
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 1998, : 1097 - 1097
  • [10] Learning-based Incremental Creation of Web Image Databases
    George, Marian
    Ghanem, Nagia
    Ismail, M. A.
    [J]. 2013 12TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2013), VOL 1, 2013, : 424 - 429