The existence and asymptotic behaviour of solutions to non-Lipschitz stochastic functional evolution equations driven by Poisson jumps

被引:15
|
作者
Taniguchi, Takeshi [1 ]
机构
[1] Kurume Univ, Div Math Sci, Grad Sch Comparat Culture, Fukuoka 8398502, Japan
基金
日本学术振兴会;
关键词
Poisson jumps; non-Lipschitz; stochastic evolution equations; PARTIAL-DIFFERENTIAL-EQUATIONS; PARABOLIC SPDES DRIVEN; SUCCESSIVE-APPROXIMATIONS; EXPONENTIAL STABILITY; COEFFICIENTS; UNIQUENESS;
D O I
10.1080/17442500903236353
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the existence and uniqueness of the energy solutions to the following non-Lipschitz stochastic functional evolution equation driven both by Brownian motion and by Poisson jumps {dX(t) = [A(t, X(t)) + f(t, X-t)]dt + g(t, X-t)dW(t) + integral(U) k(t,X-t,y)q(dtdy), t >= ), X-0 = (sic) is an element of D([-r, 0],H), where A(t, .) : V -> V* is a linear or nonlinear bounded operator, f : [0, infinity) x D([-r, 0], H) -> H, g : [0, infinity) x D([-r, 0], H) -> L-2(0)(K, H) and [0, infinity) x D([-r, 0], H) x F -> H are measurable functions. We also investigate the almost sure exponential stability of energy solutions by using the energy equality for this equation.
引用
收藏
页码:339 / 363
页数:25
相关论文
共 50 条