Prediction of Traffic-Violation Using Data Mining Techniques

被引:2
|
作者
Amiruzzaman, Md [1 ]
机构
[1] Kent State Univ, Kent, OH 44242 USA
关键词
Traffic; Prediction; Crime; Violations; Data mining; CRIME;
D O I
10.1007/978-3-030-02686-8_23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents the prediction of traffic-violations using data mining techniques, more specifically, when most likely a traffic-violation may happen. Also, the contributing factors that may cause more damages (e.g., personal injury, property damage, etc.) are discussed in this paper. The national database for traffic-violation was considered for the mining and analyzed results indicated that a few specific times are probable for traffic-violations. Moreover, most accidents happened on specific days and times. The findings of this work could help prevent some traffic-violations or reduce the chance of occurrence. These results can be used to increase cautions and traffic-safety tips.
引用
收藏
页码:283 / 297
页数:15
相关论文
共 50 条
  • [1] High-level traffic-violation detection for embedded traffic analysis
    Vijverberg, Julien A.
    de Koning, Nick A. H. M.
    Han, Jungong
    de With, Peter H. N.
    Cornelissen, Dion
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PTS 1-3, 2007, : 793 - +
  • [2] Non-public vehicle traffic-violation detection using mobile cameras
    Fu, Huini
    Hu, Yang
    Huang, Rui
    [J]. MIPPR 2013: PATTERN RECOGNITION AND COMPUTER VISION, 2013, 8919
  • [3] Application of data mining techniques for traffic density estimation and prediction
    Raj, Jithin
    Bahuleyan, Hareesh
    Vanajakshi, Lelitha Devi
    [J]. INTERNATIONAL CONFERENCE ON TRANSPORTATION PLANNING AND IMPLEMENTATION METHODOLOGIES FOR DEVELOPING COUNTRIES (11TH TPMDC) SELECTED PROCEEDINGS, 2016, 17 : 321 - 330
  • [4] Prediction of Rainfall Using Data Mining Techniques
    Tharun, V. P.
    Prakash, Ramya
    Devi, S. Renuga
    [J]. PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INVENTIVE COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICICCT), 2018, : 1507 - 1512
  • [5] Bankruptcy Prediction using Data Mining Techniques
    Wagle, Manil
    Yang, Zijiang
    Benslimane, Younes
    [J]. 2017 8TH INTERNATIONAL CONFERENCE OF INFORMATION AND COMMUNICATION TECHNOLOGY FOR EMBEDDED SYSTEMS (IC-ICTES), 2017,
  • [6] National traffic system evaluation using data mining techniques
    Chang, ECP
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY: THEORY, TOOLS, AND TECHNOLOGY II, 2000, 4057 : 409 - 411
  • [7] HEART DISEASE PREDICTION USING DATA MINING TECHNIQUES
    Rairikar, Abhishek
    Kulkarni, Vedant
    Sabale, Vikas
    Kale, Harshavardhan
    Lamgunde, Anuradha
    [J]. PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL (I2C2), 2017,
  • [8] Students Performance Prediction Using Data Mining Techniques
    Kumar, Rajesh T.
    Vamsidhar, T.
    Harika, B.
    Kumar, Madan T.
    Nissy, R.
    [J]. PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON INTELLIGENT SUSTAINABLE SYSTEMS (ICISS 2019), 2019, : 407 - 411
  • [9] Corporate bankruptcy prediction using data mining techniques
    Santos, M. F.
    Cortez, P.
    Pereira, J.
    Quintela, H.
    [J]. DATA MINING VII: DATA, TEXT AND WEB MINING AND THEIR BUSINESS APPLICATIONS, 2006, 37 : 349 - +
  • [10] Diabetes prediction model using data mining techniques
    Rastogi, Rashi
    Bansal, Mamta
    [J]. Measurement: Sensors, 2023, 25