Mating patterns;
Immune genes;
Human-driven changes;
Tree swallow;
Haemosporidian parasites;
INCREASE OFFSPRING HETEROZYGOSITY;
MALE PARENTAL CARE;
MATE CHOICE;
REPRODUCTIVE SUCCESS;
NATURAL-POPULATION;
TREE SWALLOWS;
SELECTION;
FITNESS;
PLASMODIUM;
EVOLUTION;
D O I:
10.7717/peerj.6004
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Genetic diversity at immune genes and levels of parasitism are known to affect patterns of (dis)assortative mating in several species. Heterozygote advantage and/or good genes should shape mate choice originating from pathogen/parasite-driven selection at immune genes. However, the stability of these associations, and whether they vary with environmental conditions, are still rarely documented. In this study, we describe mating patterns in a wild population of tree swallows (Tachycineta bicolor) over 4 years and assess the effects of haemosporidian parasite infection and immune genetic diversity at beta-defensin genes on those patterns within two habitats of contrasting environmental quality, in southern Quebec, Canada. We first show that mating patterns were only very weakly related to individual status of infection by haemosporidian parasites. However, we found a difference between habitats in mating patterns related to infection status, which was likely due to a non-random distribution of individuals, as non-infected mating pairs were more frequent in lower quality habitats. Mating patterns also differed depending on beta-defensin heterozygosity at AvBD2, but only for genetic partners outside of the social couple, with heterozygous individuals pairing together. Our study underlines the importance of considering habitat heterogeneity in studies of sexual selection.