Differential privacy in metric spaces: Numerical, categorical and functional data under the one roof

被引:14
|
作者
Holohan, Naoise [1 ]
Leith, Douglas J. [1 ]
Mason, Oliver [2 ]
机构
[1] Univ Dublin Trinity Coll, Sch Comp Sci & Stat, Dublin 2, Ireland
[2] Maynooth Univ Natl Univ Ireland Maynooth, Hamilton Inst, Dept Math & Stat, Maynooth, Kildare, Ireland
基金
爱尔兰科学基金会;
关键词
Differential privacy; Metric space; Categorical data; Functional data; Data sanitisation;
D O I
10.1016/j.ins.2015.01.021
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study differential privacy in the abstract setting of probability on metric spaces. Numerical, categorical and functional data can be handled in a uniform manner in this setting. We demonstrate how mechanisms based on data sanitisation and those that rely on adding noise to query responses fit within this framework. We prove that once the sanitisation is differentially private, then so is the query response for any query. We show how to construct sanitisations for high-dimensional databases using simple 1-dimensional mechanisms. We also provide lower bounds on the expected error for differentially private sanitisations in the general metric space setting. Finally, we consider the question of sufficient sets for differential privacy and show that for relaxed differential privacy, any algebra generating the Borel sigma-algebra is a sufficient set for relaxed differential privacy. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:256 / 268
页数:13
相关论文
共 50 条
  • [1] Multidimensional categorical data collection under shuffled differential privacy
    Wang, Ning
    Zhuang, Jian
    Wang, Zhigang
    Wei, Zhiqiang
    Gu, Yu
    Tang, Peng
    Yu, Ge
    COMPUTERS & SECURITY, 2025, 151
  • [2] Hierarchical Aggregation for Numerical Data under Local Differential Privacy
    Hao, Mingchao
    Wu, Wanqing
    Wan, Yuan
    SENSORS, 2023, 23 (03)
  • [3] Differential Privacy for Functions and Functional Data
    Hall, Rob
    Rinaldo, Alessandro
    Wasserman, Larry
    JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 703 - 727
  • [4] Differential privacy for functions and functional data
    Hall, Rob
    Rinaldo, Alessandro
    Wasserman, Larry
    Journal of Machine Learning Research, 2013, 14 (01) : 703 - 727
  • [5] Local Differential Privacy on Metric Spaces: optimizing the trade-off with utility
    Alvim, Mario S.
    Chatzikokolakis, Konstantinos
    Palamidessi, Catuscia
    Pazii, Anna
    IEEE 31ST COMPUTER SECURITY FOUNDATIONS SYMPOSIUM (CSF 2018), 2018, : 262 - 267
  • [6] PTT: Piecewise Transformation Technique for Analyzing Numerical Data Under Local Differential Privacy
    Ma, Fei
    Zhu, Renbo
    Wang, Ping
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (10) : 9518 - 9531
  • [7] Mean Estimation of Numerical Data Under (∈, δ)-Utility-Optimized Local Differential Privacy
    Zhang, Yue
    Zhu, Youwen
    Wang, Shaowei
    Huang, Xiaohua
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 9656 - 9669
  • [8] Estimating Numerical Distributions under Local Differential Privacy
    Li, Zitao
    Wang, Tianhao
    Lopuhaa-Zwakenberg, Milan
    Li, Ninghui
    Skoric, Boris
    SIGMOD'20: PROCEEDINGS OF THE 2020 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2020, : 621 - 635
  • [9] Data management, data science and data stewards under one roof
    Leiss, Caroline
    Kessler, Katja
    Wolter, Christine
    ZEITSCHRIFT FUR BIBLIOTHEKSWESEN UND BIBLIOGRAPHIE, 2024, 71 (5-6):
  • [10] Fuzzy differential systems under generalized metric spaces approach
    Nieto, Juan J.
    Rodriguez-Lopez, Rosana
    Georgiou, D. N.
    DYNAMIC SYSTEMS AND APPLICATIONS, 2008, 17 (01): : 1 - 24