SPLIT COMMON FIXED POINT PROBLEMS AND HIERARCHICAL VARIATIONAL INEQUALITY PROBLEMS IN HILBERT SPACES

被引:0
|
作者
Takahashi, Wataru [1 ,2 ,3 ]
Wen, Ching-Feng [1 ]
Yao, Jen-Chih [4 ]
机构
[1] Kaohsiung Med Univ, Ctr Fundamental Sci, Kaohsiung 80702, Taiwan
[2] Keio Univ, Keio Res & Educ Ctr Nat Sci, Kouhoku Ku, Yokohama, Kanagawa 2238521, Japan
[3] Tokyo Inst Technol, Dept Math & Comp Sci, Meguro Ku, Tokyo 1528552, Japan
[4] China Med Univ, Ctr Gen Educ, Taichung 40402, Taiwan
基金
日本学术振兴会;
关键词
Hierarchical variational inequality problem; split fixed point problem; maximal monotone operator; resolvent; inverse strongly monotone mapping; fixed point; equilibrium problem; STRONG-CONVERGENCE THEOREMS; MAXIMAL MONOTONE-OPERATORS; NONEXPANSIVE-MAPPINGS; NONLINEAR MAPPINGS; BANACH-SPACES; WEAK; APPROXIMATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Hi and H-2 be real Hilbert spaces and let alpha > 0. Let U be an alpha-inverse strongly monotone mapping of H-2 into H-2. Let B be a maximal monotone operator on H-1. Let S be a demimetric mapping of H-1 into H-1. Let k is an element of(0,1) and let g be a k-contraction of H-1 into itself. Let V be a (gamma) over bar -strongly monotone and L-Lipschitzian continuous operator of H-1 into H-1 with (gamma) over bar > 0 and L > 0. Take mu, gamma is an element of R as follows: 0 < mu < 2 (gamma) over bar /L-2,L- 0 < gamma < (gamma) over bar- L-2 mu/2 /k Let A : H-1 -> H-2 be a bounded linear operator such that parallel to A parallel to not equal 0. Suppose F(S) boolean AND B(-1)0 boolean AND A(-1)(u(-1)0) not equal empty set, where F(S) is the set of fixed points of S and B(-1)0 and U(-1)0 are the sets of zero points of B and U, respectively. In this paper, we prove a strong convergence theorem for finding a point z(0) of F(S) boolean AND B(-1)0 boolean AND A(-1)(u(-1)0), where z(0) is a unique fixed point of PF(s)boolean AND B-10A-1(u-10)(I-V+gamma g). This point z(0) is an element of F(S) n B(-1)0 n A(-1)(U(-1)0) is also a unique solution of the hierarchical variational inequality ((V - gamma g)z(0), q - z(0)) >= 0, V q is an element of F(S) n B(-1)0 n A(-1)(U(-1)0). Using this result, we obtain new and well-known strong convergence theorems in Hilbert spaces.
引用
收藏
页码:777 / 797
页数:21
相关论文
共 50 条
  • [1] AN ITERATIVE METHOD FOR VARIATIONAL INEQUALITY PROBLEMS AND FIXED POINT PROBLEMS IN HILBERT SPACES
    Qin, Xiaolong
    Shang, Meijuan
    Su, Yongfu
    [J]. MATEMATICKI VESNIK, 2008, 60 (02): : 107 - 120
  • [2] Convergence theorems for fixed point problems and variational inequality problems in Hilbert spaces
    Yao, Yonghong
    Liou, Yeong-Cheng
    Chen, Rudong
    [J]. MATHEMATISCHE NACHRICHTEN, 2009, 282 (12) : 1827 - 1835
  • [3] General Iterative Scheme for Split Mixed Equilibrium Problems, Variational Inequality Problems and Fixed Point Problems in Hilbert Spaces
    Deepho, Jitsupa
    Kumam, Poom
    [J]. COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2020, 11 (01): : 1 - 21
  • [4] Split hierarchical variational inequality problems and fixed point problems for nonexpansive mappings
    Qamrul Hasan Ansari
    Aisha Rehan
    Ching-Feng Wen
    [J]. Journal of Inequalities and Applications, 2015
  • [5] Split hierarchical variational inequality problems and fixed point problems for nonexpansive mappings
    Ansari, Qamrul Hasan
    Rehan, Aisha
    Wen, Ching-Feng
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [6] AN ADAPTIVE BLOCK ITERATIVE PROCESS FOR A CLASS OF MULTIPLE SETS SPLIT VARIATIONAL INEQUALITY PROBLEMS AND COMMON FIXED POINT PROBLEMS IN HILBERT SPACES
    Rehman, Habib ur
    Kumam, Poom
    Suleiman, Yusuf I.
    Kumam, Widaya
    [J]. NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2023, 13 (02): : 273 - 298
  • [7] ALGORITHMS FOR SPLIT COMMON FIXED POINT PROBLEMS IN HILBERT SPACES
    Zhao, J.
    Zong, H.
    Muangchoo, K.
    Kumam, P.
    Cho, Y. J.
    [J]. JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2018, 2 (03): : 273 - 286
  • [8] SPLIT EQUALITY FIXED POINT PROBLEMS AND COMMON NULL POINT PROBLEMS IN HILBERT SPACES
    Eslamian, Mohammad
    Azarmi, S.
    Eskandani, G. Zamani
    [J]. FIXED POINT THEORY, 2022, 23 (01): : 157 - 159
  • [9] On synchronal algorithm for fixed point and variational inequality problems in hilbert spaces
    Bulama, L. M.
    Kilicman, A.
    [J]. SPRINGERPLUS, 2016, 5 : 1 - 13
  • [10] SPLIT EQUILIBRIUM, VARIATIONAL INEQUALITY AND FIXED POINT PROBLEMS FOR MULTI-VALUED MAPPINGS IN HILBERT SPACES
    Zhao, Jing
    Liang, Yunshui
    Liu, Yiliang
    Cho, Yeol Je
    [J]. APPLIED AND COMPUTATIONAL MATHEMATICS, 2018, 17 (03) : 271 - 283