Optimum detection and segmentation of oil-slicks using polarimetric SAR data

被引:25
|
作者
Lombardo, P
Oliver, CJ
机构
[1] Univ Rome La Sapienza, Dept INFOCOM, I-00184 Rome, Italy
[2] DERA, Malvern WR14 3PS, Worcs, England
关键词
D O I
10.1049/ip-rsn:20000557
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
The paper is concerned with techniques for optimising the detection and definition of slick boundaries on the sea surface using polarimetric imagery. In principle, the full polarimetric return should provide more information than is available in a single polarisation. The authors compare the performance of a set of different polarisation measures applied to the detection of slicks. Annealed segmentation of these measures is then employed to detect and define their boundaries. Theoretical predictions are derived for the probability of detection using conventional polarisation measures, including the intensity in a single polarisation and the maximum eigenvalue and span measures for more than one polarisation channel. The authors also propose two implementations of a maximum likelihood polarisation discriminant and demonstrate that these yield significant improvement in slick detection and boundary definition.
引用
收藏
页码:309 / 321
页数:13
相关论文
共 50 条
  • [1] Optimum detection and segmentation of oil-slicks with polarimetric SAR data
    Lombardo, P
    Oliver, CJ
    [J]. RECORD OF THE IEEE 2000 INTERNATIONAL RADAR CONFERENCE, 2000, : 122 - 127
  • [2] POLARIMETRIC PARAMETERS FOR OIL SLICKS DETECTION USING SAR DATA REMOTE SENSING - AN EVALUATION
    Angelliaume, S.
    Dubois-Fernandez, P.
    Miegebielle, V.
    Dubucq, D.
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 3794 - 3797
  • [3] Marine oil slicks detection using spaceborne and airborne SAR data
    Chaudhary, Vaishali
    Kumar, Shashi
    [J]. ADVANCES IN SPACE RESEARCH, 2020, 66 (04) : 854 - 872
  • [4] OIL SLICKS DETECTION USING A POLARIMETRIC REGION CLASSIFIER
    Genovez, P.
    Freitas, C.
    Sant'Anna, S.
    Bentz, C.
    Lorenzzetti, J.
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 3239 - 3242
  • [5] Slicks detection on the sea surface based upon polarimetric SAR data
    Bandiera, F
    Ricci, G
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2005, 2 (03) : 342 - 346
  • [6] Discrimination of Oil Slicks and Lookalikes in Polarimetric SAR Images Using CNN
    Guo, Hao
    Wu, Danni
    An, Jubai
    [J]. SENSORS, 2017, 17 (08)
  • [7] ALOS-PALSAR polarimetric SAR data to observe sea oil slicks
    Migliaccio, M.
    Gambardella, A.
    Nunziata, F.
    Shimada, M.
    Isoguchi, O.
    [J]. 2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 3049 - +
  • [8] Automated oil slicks detection using SAR images
    Lounis, Bahia
    Raaf, Ouarda
    Belhadj-Aissa, Aichouche
    [J]. 2018 2ND EUROPEAN CONFERENCE ON ELECTRICAL ENGINEERING AND COMPUTER SCIENCE (EECS 2018), 2018, : 317 - 322
  • [9] ASSESSMENT OF POLARIMETRIC VARIABILITY BY DISTANCE GEOMETRY FOR ENHANCED CLASSIFICATION OF OIL SLICKS USING SAR
    Marinoni, Andrea
    Espeseth, Martine M.
    Gamba, Paolo
    Brekke, Camilla
    Eltoft, Torbjorn
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 5217 - 5220
  • [10] A Bayesian Approach to Oil Slicks Edge Detection Based on SAR Data
    Bandiera, Francesco
    Masciullo, Antonio
    Ricci, Giuseppe
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (05): : 2901 - 2909