Visualizing Rugby Game Styles Using Self-Organizing Maps

被引:4
|
作者
Lamb, Peter [1 ,2 ]
Croft, Hayden [3 ]
机构
[1] Univ Otago, Sch Phys Educ Sport & Exercise Sci, Dunedin, New Zealand
[2] Univ Otago, Biomech, Dunedin, New Zealand
[3] Otago Polytech, Dunedin, New Zealand
关键词
computer graphics; self-organizing maps; sports analytics; visual analysis;
D O I
10.1109/MCG.2016.115
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Rugby coaches and analysts often use notational data describing match events to assess their team's performance and to devise strategic plans for upcoming matches. However, given the volume and complexity of the data available, it is difficult for them to recognize high-dimensional relationships among the available performance variables. A nonlinear approach using self-organizing maps (SOM) can help visualize the performance of a team and its opponents as well as the subsequent suitability of certain game styles, given the style of the opponent. © 1981-2012 IEEE.
引用
收藏
页码:11 / 15
页数:5
相关论文
共 50 条
  • [1] Visualizing changing requirements with self-organizing maps
    Sedbrook, TA
    [J]. JOURNAL OF COMPUTER INFORMATION SYSTEMS, 2004, 45 (02) : 63 - 72
  • [2] Visualizing Demographic Trajectories with Self-Organizing Maps
    André Skupin
    Ron Hagelman
    [J]. GeoInformatica, 2005, 9 : 159 - 179
  • [3] Visualizing demographic trajectories with self-organizing maps
    Skupin, A
    Hagelman, R
    [J]. GEOINFORMATICA, 2005, 9 (02) : 159 - 179
  • [4] Discriminating and visualizing anomalies using negative selection and self-organizing maps
    Gonzalez, Fabio A.
    Galeano, Juan Carlos
    Rojas, Diego Alexander
    Veloza-Suan, Angelica
    [J]. GECCO 2005: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOLS 1 AND 2, 2005, : 297 - 304
  • [5] Visualizing Syscalls using Self-organizing Maps for System Intrusion Detection
    Landauer, Max
    Skopik, Florian
    Wurzenberger, Markus
    Hotwagner, Wolfgang
    Rauber, Andreas
    [J]. ICISSP: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY, 2020, : 349 - 360
  • [6] Visualizing changes in data collections using growing self-organizing maps
    Nürnberger, A
    Detyniecki, M
    [J]. PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 1912 - 1917
  • [7] Visualizing ontology components through self-organizing maps
    Elliman, D
    Pulido, JRG
    [J]. SIXTH INTERNATIONAL CONFERENCE ON INFORMATION VISUALISATION, PROCEEDINGS, 2002, : 434 - 438
  • [8] GTSOM: Game Theoretic Self-Organizing Maps
    Herbert, Joseph
    Yao, JingTao
    [J]. TRENDS IN NEURAL COMPUTATION, 2007, 35 : 199 - +
  • [9] Clustering and visualizing HIV quasispecies using Kohonen's self-organizing maps
    Mora, A. M.
    Merelo, J. J.
    Briones, C.
    Moran, F.
    Laredo, J. L. J.
    [J]. COMPUTATIONAL AND AMBIENT INTELLIGENCE, 2007, 4507 : 940 - +
  • [10] Visualizing temporal cluster changes using Relative Density Self-Organizing Maps
    Graham J. Denny
    Peter Williams
    [J]. Knowledge and Information Systems, 2010, 25 : 281 - 302