THE BROUWER DEGREE ASSOCIATED TO CLASSICAL EIGENVALUE PROBLEMS AND APPLICATIONS TO NONLINEAR SPECTRAL THEORY
被引:0
|
作者:
Benevieri, Pierluigi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, BrazilUniv Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
Benevieri, Pierluigi
[1
]
Calamai, Alessandro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Politecn Marche, Dipartimento Ingn Civile Edile & Architettura, Via Brecce Bianche, I-60131 Ancona, ItalyUniv Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
Calamai, Alessandro
[2
]
Furi, Massimo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Firenze, Dipartimento Matemat & Informat Ulisse Dini, Via S Marta 3, I-50139 Florence, ItalyUniv Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
Furi, Massimo
[3
]
Pera, Maria Patrizia
论文数: 0引用数: 0
h-index: 0
机构:
Univ Firenze, Dipartimento Matemat & Informat Ulisse Dini, Via S Marta 3, I-50139 Florence, ItalyUniv Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
Pera, Maria Patrizia
[3
]
机构:
[1] Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
[2] Univ Politecn Marche, Dipartimento Ingn Civile Edile & Architettura, Via Brecce Bianche, I-60131 Ancona, Italy
[3] Univ Firenze, Dipartimento Matemat & Informat Ulisse Dini, Via S Marta 3, I-50139 Florence, Italy
Eigenvalues;
eigenvectors;
nonlinear spectral theory;
degree theory;
PERTURBED FREDHOLM OPERATOR;
UNIT EIGENVECTORS;
GLOBAL CONTINUATION;
PERSISTENCE;
D O I:
10.12775/TMNA.2021.006
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Thanks to a connection between two completely different topics, the classical eigenvalue problem in a finite dimensional real vector space and the Brouwer degree for maps between oriented differentiable real manifolds, we are able to solve, at least in the finite dimensional context, a conjecture regarding global continuation in nonlinear spectral theory that we formulated in some recent papers. The infinite dimensional case seems nontrivial, and is still unsolved.
机构:
Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, BrazilUniv Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
Benevieri, Pierluigi
Calamai, Alessandro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Politecn Marche, Dipartimento Ingn Civile Edile & Architettura, Via Brecce Bianche, I-60131 Ancona, ItalyUniv Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
Calamai, Alessandro
Furi, Massimo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Firenze, Dipartimento Matemat & Informat Ulisse Dini, Via S Marta 3, I-50139 Florence, ItalyUniv Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
Furi, Massimo
Pera, Maria Patrizia
论文数: 0引用数: 0
h-index: 0
机构:
Univ Firenze, Dipartimento Matemat & Informat Ulisse Dini, Via S Marta 3, I-50139 Florence, ItalyUniv Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil