THE BROUWER DEGREE ASSOCIATED TO CLASSICAL EIGENVALUE PROBLEMS AND APPLICATIONS TO NONLINEAR SPECTRAL THEORY

被引:0
|
作者
Benevieri, Pierluigi [1 ]
Calamai, Alessandro [2 ]
Furi, Massimo [3 ]
Pera, Maria Patrizia [3 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
[2] Univ Politecn Marche, Dipartimento Ingn Civile Edile & Architettura, Via Brecce Bianche, I-60131 Ancona, Italy
[3] Univ Firenze, Dipartimento Matemat & Informat Ulisse Dini, Via S Marta 3, I-50139 Florence, Italy
关键词
Eigenvalues; eigenvectors; nonlinear spectral theory; degree theory; PERTURBED FREDHOLM OPERATOR; UNIT EIGENVECTORS; GLOBAL CONTINUATION; PERSISTENCE;
D O I
10.12775/TMNA.2021.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Thanks to a connection between two completely different topics, the classical eigenvalue problem in a finite dimensional real vector space and the Brouwer degree for maps between oriented differentiable real manifolds, we are able to solve, at least in the finite dimensional context, a conjecture regarding global continuation in nonlinear spectral theory that we formulated in some recent papers. The infinite dimensional case seems nontrivial, and is still unsolved.
引用
收藏
页码:499 / 523
页数:25
相关论文
共 50 条