Monte Carlo simulation and statistical inference of morphologically constrained GRFs

被引:0
|
作者
Sivakumar, K [1 ]
Goutsias, J [1 ]
机构
[1] Texas A&M Univ, Texas Ctr Appl Technol, College Stn, TX 77843 USA
关键词
Gibbs random fields; metropolis algorithm; Monte Carlo simulations; morphological; constraints; statistical inference;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper is about a new class of random spatial models, known as morphologically constrained Gibbs random fields, that are capable of modeling geometrical constraints in images by means of mathematical morphology. Two issues pertaining these models are considered in this paper: simulation and statistical inference. We first introduce a variant of the Metropolis algorithm, based on a multi-site updating strategy, for simulating morphologically constrained Gibbs random fields, that converges substantially faster than traditional single-site updating algorithms. We then consider the problem of optimally fitting morphologically constrained Gibbs random, fields to real data. We show that, under a natural condition, maximum likelihood parameter estimation can be approximately implemented by means of the pattern spectrum.
引用
收藏
页码:267 / 274
页数:8
相关论文
共 50 条
  • [1] Backward Simulation Methods for Monte Carlo Statistical Inference
    Lindsten, Fredrik
    Schon, Thomas B.
    [J]. FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2013, 6 (01): : 1 - 143
  • [2] Morphologically constrained GRFs: Applications to texture synthesis and analysis
    Sivakumar, K
    Goutsias, J
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1999, 21 (02) : 99 - 113
  • [3] Sequential Monte Carlo optimization and statistical inference
    Duan, Jin-Chuan
    Li, Shuping
    Xu, Yaxian
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2023, 15 (03)
  • [4] Statistical ensembles for Monte Carlo simulation
    Wilding, NB
    [J]. COMPUTER SIMULATIONS OF SURFACES AND INTERFACES, 2003, 114 : 95 - 108
  • [5] A Monte Carlo simulation framework for reject inference
    Anderson, Billie
    Newman, Mark A.
    Grim, Philip A., II
    Hardin, J. Michael
    [J]. JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2023, 74 (04) : 1133 - 1149
  • [6] Monte Carlo simulation of the constrained Markovian evolution
    Jadach, S
    Skrzypek, M
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2004, 135 : 338 - 341
  • [7] MONTE-CARLO SIMULATION OF STATISTICAL POWER
    BORENSTEIN, M
    KANE, J
    BUCHBINDER, J
    [J]. PSYCHOPHARMACOLOGY BULLETIN, 1987, 23 (02) : 300 - 302
  • [8] A statistical tolerance analysis approach for over-constrained mechanism based on optimization and Monte Carlo simulation
    Qureshi, Ahmed Jawad
    Dantan, Jean-Yves
    Sabri, Vahid
    Beaucaire, Paul
    Gayton, Nicolas
    [J]. COMPUTER-AIDED DESIGN, 2012, 44 (02) : 132 - 142
  • [9] NONLINEAR MONTE CARLO MISSION SIMULATION AND STATISTICAL ANALYSIS
    Potts, Christopher L.
    Kelly, Richard M.
    Goodson, Troy D.
    [J]. ASTRODYNAMICS 2009, VOL 135, PTS 1-3, 2010, 135 : 1725 - 1740
  • [10] The Application of Monte Carlo Simulation for Statistical Process Control
    Zhang, Lin
    [J]. PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE OF MANAGEMENT ENGINEERING AND INFORMATION TECHNOLOGY, VOLS 1 AND 2, 2009, : 853 - 856