Engineering non-equilibrium quantum phase transitions via causally gapped Hamiltonians

被引:14
|
作者
Mohseni, Masoud [1 ]
Strumpfer, Johan [2 ]
Rams, Marek M. [3 ]
机构
[1] Google Quantum Artificial Intelligence Lab, Venice, CA 90291 USA
[2] Google, San Francisco, CA 94109 USA
[3] Jagiellonian Univ, Inst Phys, Lojasiewicza 11, PL-30348 Krakow, Poland
来源
NEW JOURNAL OF PHYSICS | 2018年 / 20卷
关键词
quantum phase transition; disordered spin chains; Kibble-Zurek mechanism; adiabatic protocol; random Ising model; ISING SPIN CHAINS; XY-MODEL; DYNAMICS; SYSTEMS; DISORDER;
D O I
10.1088/1367-2630/aae3ed
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a phenomenological theory for many-body control of critical phenomena by engineering causally-induced gaps for quantum Hamiltonian systems. The core mechanisms are controlling information flow within and/or between clusters that are created near a quantum critical point. To this end, we construct inhomogeneous quantum phase transitions via designing spatiotemporal quantum fluctuations. We show how non-equilibrium evolution of disordered quantum systems can create new effective correlation length scales and effective dynamical critical exponents. In particular, we construct a class of causally-induced non-adiabatic quantum annealing transitions for strongly disordered quantum Ising chains leading to exponential suppression of topological defects beyond standard Kibble-Zurek predictions. Using exact numerical techniques for 1D quantum Hamiltonian systems, we demonstrate that our approach exponentially outperforms adiabatic quantum computing. Using strong-disorder renormalization group (SDRG), we demonstrate the universality of inhomogeneous quantum critical dynamics and exhibit the reconstructions of causal zones during SDRG flow. Wederive a scaling relation for minimal causal gaps showing they narrow more slowly than any polynomial with increasing size of system, in contrast to stretched exponential scaling in standard adiabatic evolution. Furthermore, we demonstrate similar scaling behavior for random cluster-Ising Hamiltonians with higher order interactions.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Non-equilibrium phase transitions
    Hinrichsen, Haye
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 369 (01) : 1 - 28
  • [2] Quantum critical states and phase transitions in the presence of non-equilibrium noise
    Dalla Torre, Emanuele G.
    Demler, Eugene
    Giamarchi, Thierry
    Altman, Ehud
    [J]. NATURE PHYSICS, 2010, 6 (10) : 806 - 810
  • [3] Quantum critical states and phase transitions in the presence of non-equilibrium noise
    Emanuele G. Dalla Torre
    Eugene Demler
    Thierry Giamarchi
    Ehud Altman
    [J]. Nature Physics, 2010, 6 : 806 - 810
  • [4] Non-equilibrium phase transitions in complex plasma
    Suetterlin, K. R.
    Wysocki, A.
    Raeth, C.
    Ivlev, A. V.
    Thomas, H. M.
    Khrapak, S.
    Zhdanov, S.
    Rubin-Zuzic, M.
    Goedheer, W. J.
    Fortov, V. E.
    Lipaev, A. M.
    Molotkov, V. I.
    Petrov, O. F.
    Morfill, G. E.
    Loewen, H.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2010, 52 (12)
  • [5] Non-Equilibrium Phase Transitions in Actomyosin Cortices
    Fakhri, Nikta
    [J]. BIOPHYSICAL JOURNAL, 2017, 112 (03) : 2A - 2A
  • [6] Non-equilibrium phase transitions in a liquid crystal
    Dan, K.
    Roy, M.
    Datta, A.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (09):
  • [7] NON-EQUILIBRIUM PHASE-TRANSITIONS - A REVIEW
    VENKATARAMAN, G
    NEELAKANTAN, K
    [J]. LECTURE NOTES IN PHYSICS, 1983, 184 : 228 - 237
  • [8] Equilibrium and non-equilibrium phase transitions in copolymer polyelectrolyte hydrogels
    English, AE
    Tanaka, T
    Edelman, ER
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (05): : 1645 - 1654
  • [9] Phase Transitions in Equilibrium and Non-Equilibrium Models on Some Topologies
    De Sousa Lima, Francisco W.
    [J]. ENTROPY, 2016, 18 (03)
  • [10] Non-equilibrium quantum phase transition via entanglement decoherence dynamics
    Lin, Yu-Chen
    Yang, Pei-Yun
    Zhang, Wei-Min
    [J]. SCIENTIFIC REPORTS, 2016, 6