In this numerical study, supersonic combustion of liquid kerosene in a strut-based combustor is investigated. To this end, three-dimensional compressible, turbulent, nonreacting and reacting flow calculations with a single-step chemistry model have been carried out. For the nonreacting flow calculations, fuel droplet trajectories, degree of mixing, and mixing efficiency are presented and discussed. For the reacting flow calculations, contours of heat release and Mach number and the variation of combustion efficiency, total pressure loss, and thrust profile along the combustor length are used to identify the regions of mixing and heat release inside the combustor. Furthermore, the predicted variation of static pressure along the combustor top wall is compared with experimental data. The significance of the lateral spread of the fuel and the extent of the mixing process, especially for a liquid fuel such as kerosene, on the prediction of heat release is discussed in detail.