Removing artifacts from TMS-evoked EEG: A methods review and a unifying theoretical framework

被引:22
|
作者
Hernandez-Pavon, Julio C. [1 ,2 ,3 ]
Kugiumtzis, Dimitris [4 ]
Zrenner, Christoph [5 ,6 ,7 ]
Kimiskidis, Vasilios K. [8 ,9 ]
Metsomaa, Johanna [5 ,6 ,10 ]
机构
[1] Shirley Ryan AbilityLab Rehabil Inst Chi, Legs Walking Lab, Chicago, IL 60611 USA
[2] Northwestern Univ, Feinberg Sch Med, Dept Phys Med & Rehabil, Chicago, IL USA
[3] Ctr Brain Stimulat, Shirley Ryan AbilityLab, Chicago, IL USA
[4] Aristotle Univ Thessaloniki, Dept Elect & Comp Engn, Fac Engn, Thessaloniki, Greece
[5] Univ Tubingen, Dept Neurol & Stroke, Tubingen, Germany
[6] Univ Tubingen, Hertie Inst Clin Brain Res, Tubingen, Germany
[7] Ctr Addict & Mental Hlth, Temerty Ctr Therapeut Brain Intervent, Toronto, ON, Canada
[8] Univ Toronto, Dept Psychiat, Toronto, ON, Canada
[9] Aristotle Univ Thessaloniki, Sch Med, Dept Neurol 1, Thessaloniki, Greece
[10] Aalto Univ, Dept Neurosci & Biomed Engn, Espoo, Finland
关键词
Transcranial magnetic stimulation; Electroencephalography; Artifacts; Spatial filters; Temporal filters; Independent component analysis; Principal component analysis; Signal space projection; Beamforming; TRANSCRANIAL MAGNETIC STIMULATION; INDEPENDENT COMPONENT ANALYSIS; RESPONSES; MEG; EXCITABILITY; SEPARATION; ALGORITHM; TESA;
D O I
10.1016/j.jneumeth.2022.109591
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Transcranial magnetic stimulation (TMS) combined with electroencephalography (EEG) is a technique for studying cortical excitability and connectivity in health and disease, allowing basic research and potential clinical applications. A major methodological issue, severely limiting the applicability of TMS-EEG, relates to the contamination of EEG signals by artifacts of biologic or non-biologic origin. To solve this problem, several methods, based on independent component analysis (ICA), principal component analysis (PCA), signal space projection (SSP), and other approaches, have been developed over the last decade. This article is divided into two parts. In the first part, we review the theoretical background of the currently available TMS-EEG artifact removal methods. In the second part, we formally introduce the mathematics underpinnings of the cleaning methods. We classify them into spatial and temporal filters based on their properties. Since the most frequently used TMS-EEG cleaning approach are spatial filter methods, we focus on them and introduce beamforming as a unified framework of the most popular spatial filtering techniques. This unifying approach enables the comparative assessment of these methods by highlighting their differences in terms of assumptions, challenges, and applicability for different types of artifacts and data. The different properties and challenges of the methods discussed are illustrated with both simulated and recorded data. This article targets non-mathematical and mathematical audiences. Accordingly, those readers interested in essential background information on these methods can focus on Section 2. Whereas theory-oriented readers may find Section 3 helpful for making informed decisions between existing methods and developing the methodology further.
引用
下载
收藏
页数:21
相关论文
共 50 条
  • [1] Reducing Artifacts in TMS-Evoked EEG
    Jose Fuertes, Juan
    Travieso, Carlos M.
    Alvarez, A.
    Ferrer, M. A.
    Alonso, J. B.
    HYBRID ARTIFICIAL INTELLIGENCE SYSTEMS, PT 1, 2010, 6076 : 302 - +
  • [2] Dealing with artifacts in TMS-evoked EEG
    Ilmoniemi, Risto J.
    Hernandez-Pavon, Julio C.
    Makela, Niko N.
    Metsomaa, Johanna
    Mutanen, Tuomas P.
    Stenroos, Matti
    Sarvas, Jukka
    2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 230 - 233
  • [3] Projecting out muscle artifacts from TMS-evoked EEG
    Maki, Hanna
    Ilmoniemi, Risto J.
    NEUROIMAGE, 2011, 54 (04) : 2706 - 2710
  • [4] Recovering TMS-evoked EEG responses masked by muscle artifacts
    Mutanen, Tuomas P.
    Kukkonen, Matleena
    Nieminen, Jaakko O.
    Stenroos, Matti
    Sarvas, Jukka
    Ilmoniemi, Risto J.
    NEUROIMAGE, 2016, 139 : 157 - 166
  • [5] Pharmacophysiology of TMS-evoked EEG potentials: A mini-review
    Darmani, Ghazaleh
    Ziemann, Ulf
    BRAIN STIMULATION, 2019, 12 (03) : 829 - 831
  • [6] Characterising TMS-evoked EEG potentials for treatment response in people with epilepsy
    Dworkin, A.
    Jimenez-Jimenez, D.
    Turco, F.
    Johnson, C.
    Ravenscroft, C.
    Pizarro, J.
    D'Ambrosio, S.
    Silvennoinen, K.
    Zagaglia, S.
    Perulli, M.
    Sisodiya, S.
    Balestrini, S.
    EPILEPSIA, 2022, 63 : 231 - 232
  • [7] Uncovering neural independent components from highly artifactual TMS-evoked EEG data
    Hernandez-Pavon, Julio C.
    Metsomaa, Johanna
    Mutanen, Tuomas
    Stenroos, Matti
    Maki, Hanna
    Ilmoniemi, Risto J.
    Sarvas, Jukka
    JOURNAL OF NEUROSCIENCE METHODS, 2012, 209 (01) : 144 - 157
  • [8] Lamotrigine and levetiracetam exert a similar modulation of TMS-evoked EEG potentials
    Premoli, Isabella
    Biondi, Andrea
    Carlesso, Sara
    Rivolta, Davide
    Richardson, Mark P.
    EPILEPSIA, 2017, 58 (01) : 42 - 50
  • [9] Comparison of synchrosqueezing transform to alternative methods for time-frequency analysis of TMS-evoked EEG oscillations
    Wang, Yong
    Bai, Yang
    Xia, Xiaoyu
    Niu, Zikang
    Yang, Yi
    He, Jianghong
    Li, Xiaoli
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 70
  • [10] The effects of NMDA receptor blockade on TMS-evoked EEG potentials from prefrontal and parietal cortex
    Nigel C. Rogasch
    Carl Zipser
    Ghazaleh Darmani
    Tuomas P. Mutanen
    Mana Biabani
    Christoph Zrenner
    Debora Desideri
    Paolo Belardinelli
    Florian Müller-Dahlhaus
    Ulf Ziemann
    Scientific Reports, 10