Common Decoy Distributions Simplify False Discovery Rate Estimation in Shotgun Proteomics

被引:7
|
作者
Madej, Dominik [1 ]
Wu, Long [1 ]
Lam, Henry [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Chem & Biol Engn, Kowloon, Hong Kong 999077, Peoples R China
关键词
peptide identification; false discovery rate; target-decoy search; PEPTIDE IDENTIFICATIONS; SEARCH STRATEGY; PROTEIN IDENTIFICATIONS; MASS; TANDEM; VALIDATION; CONFIDENCE; ACCURACY; MS/MS; MODEL;
D O I
10.1021/acs.jproteome.1c00600
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In shotgun proteomics, false discovery rate (FDR) estimation is a necessary step to ensure the quality of accepted peptide-spectrum matches (PSMs) from a database search. Popular statistical validation tools for FDR control tend to rely on target-decoy searching to build empirical, dataset-specific models, which often leads to inaccurate FDR estimates. In this paper, we propose a new approach named common decoy distribution (CDD) to FDR estimation using the idea of a fixed empirical null score distribution derived from millions of peptide tandem mass spectra. To demonstrate the viability of CDD, its stability with respect to noise and the presence of unexpected peptide modifications was evaluated. PeptideProphet-based implementation of CDD was benchmarked against decoy-based PeptideProphet, and both methods exhibited similar accuracy of FDR estimates and retrieval of correct PSMs. The finding of this study calls for a re-evaluation of the necessity of dataset-specific target-decoy searches and illustrates the potential of Big Data approaches for statistical analysis in proteomics.
引用
收藏
页码:339 / 348
页数:10
相关论文
共 50 条
  • [1] Unbiased False Discovery Rate Estimation for Shotgun Proteomics Based on the Target-Decoy Approach
    Levitsky, Lev I.
    Ivanov, Mark V.
    Lobas, Anna A.
    Gorshkov, Mikhail V.
    JOURNAL OF PROTEOME RESEARCH, 2017, 16 (02) : 393 - 397
  • [2] Improved False Discovery Rate Estimation Procedure for Shotgun Proteomics
    Keich, Uri
    Kertesz-Farkas, Attila
    Noble, William Stafford
    JOURNAL OF PROTEOME RESEARCH, 2015, 14 (08) : 3148 - 3161
  • [3] Empirical approach to false discovery rate estimation in shotgun proteomics
    Goloborodko, Anton A.
    Mayerhofer, Corina
    Zubarev, Alexander R.
    Tarasova, Irina A.
    Gorshkov, Alexander V.
    Zubarev, Roman A.
    Gorshkov, Mikhail V.
    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2010, 24 (04) : 454 - 462
  • [4] Decoy Methods for Assessing False Positives and False Discovery Rates in Shotgun Proteomics
    Wang, Guanghui
    Wu, Wells W.
    Zhang, Zheng
    Masilamani, Shyama
    Shen, Rong-Fong
    ANALYTICAL CHEMISTRY, 2009, 81 (01) : 146 - 159
  • [5] Artificial Decoy Spectral Libraries for False Discovery Rate Estimation in Spectral Library Searching in Proteomics
    Lam, Henry
    Deutsch, Eric W.
    Aebersold, Ruedi
    JOURNAL OF PROTEOME RESEARCH, 2010, 9 (01) : 605 - 610
  • [6] New mixture models for decoy-free false discovery rate estimation in mass spectrometry proteomics
    Peng, Yisu
    Jain, Shantanu
    Li, Yong Fuga
    Gregus, Michal
    Ivanov, Alexander R.
    Vitek, Olga
    Radivojac, Predrag
    BIOINFORMATICS, 2020, 36 : I745 - I753
  • [7] An algorithm for decoy-free false discovery rate estimation in XL-MS/MS proteomics
    Peng, Yisu
    Jain, Shantanu
    Radivojac, Predrag
    BIOINFORMATICS, 2024, 40 : i428 - i436
  • [8] Improved False Discovery Rate Estimation Procedure for Shotgun Proteomics (vol 14, pg 3148, 2015)
    Keich, Uri
    Kertesz-Farkas, Attila
    Noble, William Stafford
    JOURNAL OF PROTEOME RESEARCH, 2016, 15 (12) : 4779 - 4780
  • [9] Target-decoy false discovery rate estimation using Crema
    Lin, Andy
    See, Donavan
    Fondrie, William E.
    Keich, Uri
    Noble, William Stafford
    PROTEOMICS, 2024, 24 (08)
  • [10] Target-small decoy search strategy for false discovery rate estimation
    Kim, Hyunwoo
    Lee, Sangjeong
    Park, Heejin
    BMC BIOINFORMATICS, 2019, 20 (01)