共 50 条
Near real-time vaccine safety surveillance with partially accrued data
被引:30
|作者:
Greene, Sharon K.
[1
,2
]
Kulldorff, Martin
[1
,2
]
Yin, Ruihua
[1
,2
]
Yih, W. Katherine
[1
,2
]
Lieu, Tracy A.
[1
,2
]
Weintraub, Eric S.
[3
]
Lee, Grace M.
[1
,2
,4
,5
]
机构:
[1] Harvard Univ, Sch Med, Dept Populat Med, Boston, MA 02215 USA
[2] Harvard Pilgrim Hlth Care Inst, Boston, MA 02215 USA
[3] Ctr Dis Control & Prevent, Immunizat Safety Off, Atlanta, GA USA
[4] Childrens Hosp Boston, Dept Lab Med, Boston, MA USA
[5] Childrens Hosp Boston, Div Infect Dis, Boston, MA USA
关键词:
influenza vaccine;
near real-time surveillance;
quality control;
vaccine safety;
PROBABILITY RATIO TEST;
ADVERSE EVENTS;
INFLUENZA;
D O I:
10.1002/pds.2133
中图分类号:
R1 [预防医学、卫生学];
学科分类号:
1004 ;
120402 ;
摘要:
Purpose The Vaccine Safety Datalink (VSD) Project conducts near real-time vaccine safety surveillance using sequential analytic methods. Timely surveillance is critical in identifying potential safety problems and preventing additional exposure before most vaccines are administered. For vaccines that are administered during a short period, such as influenza vaccines, timeliness can be improved by undertaking analyses while risk windows following vaccination are ongoing and by accommodating predictable and unpredictable data accrual delays. We describe practical solutions to these challenges, which were adopted by the VSD Project during pandemic and seasonal influenza vaccine safety surveillance in 2009/2010. Methods Adjustments were made to two sequential analytic approaches. The Poisson-based approach compared the number of pre-defined adverse events observed following vaccination with the number expected using historical data. The expected number was adjusted for the proportion of the risk window elapsed and the proportion of inpatient data estimated to have accrued. The binomial-based approach used a self-controlled design, comparing the observed numbers of events in risk versus comparison windows. Events were included in analysis only if they occurred during a week that had already passed for both windows. Results Analyzing data before risk windows fully elapsed improved the timeliness of safety surveillance. Adjustments for data accrual lags were tailored to each data source and avoided biasing analyses away from detecting a potential safety problem, particularly early during surveillance. Conclusions The timeliness of vaccine and drug safety surveillance can be improved by properly accounting for partially elapsed windows and data accrual delays. Copyright c 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:583 / 590
页数:8
相关论文