Radial dependence of the carrier mobility in semiconductor nanowires

被引:10
|
作者
Das, KK [1 ]
Mizel, A [1 ]
机构
[1] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
关键词
D O I
10.1088/0953-8984/17/42/008
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The mobility of charge carriers in a semiconductor nanowire is explored as a function of increasing radius, assuming low temperatures where impurity scattering dominates. The competition between increased cross-section and the concurrent increase in available scattering channels causes strongly non-monotonic dependence of the mobility on the radius. The inter-band scattering causes sharp declines in the mobility at the wire radii at which each new channel becomes available. At intermediate radii with the number of channels unchanged the mobility is seen to maintain an exponential growth even with multiple channels. We also compare the effects of changing the radial scaling of the impurity distribution. We use transverse carrier wavefunctions that are consistent with boundary conditions and demonstrate that the delta-function approximate transverse profile leads to errors in the case of remote impurities.
引用
收藏
页码:6675 / 6685
页数:11
相关论文
共 50 条
  • [1] Tailoring the carrier mobility of semiconductor nanowires by remote dielectrics
    Konar, Aniruddha
    Jena, Debdeep
    [J]. JOURNAL OF APPLIED PHYSICS, 2007, 102 (12)
  • [2] Measuring the capacitance of individual semiconductor nanowires for carrier mobility assessment
    Tu, Ryan
    Zhang, Li
    Nishi, Yoshio
    Dai, Hongjie
    [J]. NANO LETTERS, 2007, 7 (06) : 1561 - 1565
  • [3] Population dependence of THz charge carrier mobility and non-Drude-like behavior in short semiconductor nanowires
    Achtstein, Alexander W.
    Owschimikow, Nina
    Quick, Michael T.
    [J]. NANOSCALE, 2021, 14 (01) : 19 - 25
  • [4] Measurement of Charge-Density Dependence of Carrier Mobility in an Organic Semiconductor Blend
    Shuttle, Christopher G.
    Hamilton, Richard
    Nelson, Jenny
    O'Regan, Brian C.
    Durrant, James R.
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (05) : 698 - 702
  • [5] Ultrafast Carrier Dynamics in Semiconductor Nanowires
    Prasankumar, R. P.
    Choi, S. G.
    Wang, G. T.
    Picraux, S. T.
    Taylor, A. J.
    [J]. 2008 CONFERENCE ON LASERS AND ELECTRO-OPTICS & QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE, VOLS 1-9, 2008, : 1796 - +
  • [6] Ultrafast carrier dynamics in semiconductor nanowires
    Prasankumar, Rohit P.
    Upadhya, Prashanth C.
    Taylor, Antoinette J.
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2009, 246 (09): : 1973 - 1995
  • [7] Ultrafast Carrier Dynamics in Semiconductor Nanowires
    Prasankumar, R. P.
    Choi, S. G.
    Wang, G. T.
    Upadhya, P. C.
    Trugman, S. A.
    Picraux, S. T.
    Taylor, A. J.
    [J]. ULTRAFAST PHENOMENA XVI, 2009, 92 : 271 - +
  • [8] Measurement of carrier mobility in silicon nanowires
    Gunawan, Oki
    Sekaric, Lidija
    Majumdar, Amlan
    Rooks, Michael
    Appenzeller, Joerg
    Sleight, Jeffrey W.
    Guha, Supratik
    Haensch, Wilfried
    [J]. NANO LETTERS, 2008, 8 (06) : 1566 - 1571
  • [9] Carrier mobility in strained Ge nanowires
    Niquet, Yann-Michel
    Delerue, Christophe
    [J]. JOURNAL OF APPLIED PHYSICS, 2012, 112 (08)
  • [10] DEVICE FOR SEMICONDUCTOR CARRIER MOBILITY MEASUREMENT
    Lozanova, Siya
    Ralchev, Martin
    Roumenin, Chavdar
    [J]. COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2022, 75 (09): : 1334 - 1342