Stochastic satisfiability modulo theories for non-linear arithmetic

被引:0
|
作者
Teige, Tino [1 ]
Fraenzle, Martin [1 ]
机构
[1] Carl von Ossietzky Univ Oldenburg, D-26111 Oldenburg, Germany
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The stochastic satisfiability modulo theories (SSMT) problem is a generalization of the SMT problem on existential and randomized (aka. stochastic) quantification over discrete variables of an SMT formula. This extension permits the concise description of diverse problems combining reasoning under uncertainty with data dependencies. Solving problems with various kinds of uncertainty has been extensively studied in Artificial Intelligence. Famous examples are stochastic satisfiability and stochastic constraint programming. In this paper, we extend the algorithm for SSMT for decidable theories presented in [FHT08] to non-linear arithmetic theories over the reals and integers which axe in general undecidable. Therefore, we combine approaches from Constraint Programming, namely the iSAT algorithm tackling mixed Boolean and non-linear arithmetic constraint systems, and from Artificial Intelligence handling existential and randomized quantifiers. Furthermore, we evaluate our novel algorithm and its enhancements on benchmarks from the probabilistic hybrid systems domain.
引用
收藏
页码:248 / 262
页数:15
相关论文
共 50 条
  • [1] Superposition Modulo Non-linear Arithmetic
    Eggers, Andreas
    Kruglov, Evgeny
    Kupferschmid, Stefan
    Scheibler, Karsten
    Teige, Tino
    Weidenbach, Christoph
    FRONTIERS OF COMBINING SYSTEMS, 2011, 6989 : 119 - +
  • [2] Satisfiability of Non-linear (Ir) rational Arithmetic
    Zankl, Harald
    Middeldorp, Aart
    LOGIC FOR PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND REASONING (LPAR-16), 2010, 6355 : 481 - 500
  • [3] Local Search For Satisfiability Modulo Integer Arithmetic Theories
    Cai, Shaowei
    Li, Bohan
    Zhang, Xindi
    ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2023, 24 (04)
  • [4] Stochastic Local Search for Satisfiability Modulo Theories
    Froehlich, Andreas
    Biere, Armin
    Wintersteiger, Christoph M.
    Hamadi, Youssef
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 1136 - 1143
  • [5] Solving Non-linear Polynomial Arithmetic via SAT Modulo Linear Arithmetic
    Borralleras, Cristina
    Lucas, Salvador
    Navarro-Marset, Rafael
    Rodriguez-Carbonell, Enric
    Rubio, Albert
    AUTOMATED DEDUCTION - CADE-22, 2009, 5663 : 294 - 305
  • [6] Satisfiability of Non-linear Transcendental Arithmetic as a Certificate Search Problem
    Lipparini, Enrico
    Ratschan, Stefan
    JOURNAL OF AUTOMATED REASONING, 2025, 69 (01)
  • [7] Satisfiability modulo theories
    Barrett, Clark
    Sebastiani, Roberto
    Seshia, Sanjit A.
    Tinelli, Cesare
    Frontiers in Artificial Intelligence and Applications, 2009, 185 (01) : 825 - 885
  • [8] Satisfiability of Non-linear Transcendental Arithmetic as a Certificate Search Problem
    Lipparini, Enrico
    Ratschan, Stefan
    NASA FORMAL METHODS, NFM 2023, 2023, 13903 : 472 - 488
  • [9] Optimization Modulo Non-linear Arithmetic via Incremental Linearization
    Bigarella, Filippo
    Cimatti, Alessandro
    Griggio, Alberto
    Irfan, Ahmed
    Jonas, Martin
    Roveri, Marco
    Sebastiani, Roberto
    Trentin, Patrick
    FRONTIERS OF COMBINING SYSTEMS (FROCOS 2021), 2021, 12941 : 213 - 231
  • [10] Efficient Interpolant Generation in Satisfiability Modulo Linear Integer Arithmetic
    Griggio, Alberto
    Thi Thieu Hoa Le
    Sebastiani, Roberto
    TOOLS AND ALGORITHMS FOR THE CONSTRUCTION AND ANALYSIS OF SYSTEMS, 2011, 6605 : 143 - +