Automated robust test framework for electrical impedance tomography

被引:9
|
作者
Gaggero, Pascal O. [1 ]
Adler, Andy [2 ]
Waldmann, Andreas D. [3 ]
Mamatjan, Yasin [2 ,4 ]
Justiz, Joern [1 ]
Koch, Volker M. [1 ]
机构
[1] Bern Univ Appl Sci, Inst Human Ctr Engn, Biel, Switzerland
[2] Carleton Univ, Syst & Comp Engn, Ottawa, ON K1S 5B6, Canada
[3] Swisstom AG, CH-7302 Landquart, Switzerland
[4] Zirve Univ, Dept Elect Elect Engn, Gaziantep, Turkey
关键词
EIT; test system; robot; forward model; image quality; PHANTOM; PERFORMANCE;
D O I
10.1088/0967-3334/36/6/1227
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
An automated test system and procedure is proposed, designed to enable systematic testing of electrical impedance tomography (EIT) devices. The system is designed to calculate reliable, repeatable and accurate performance figures of merit of an EIT system using a saline phantom and an industrial robot arm. Applications of the test system are to compare EIT devices against requirements, or to help optimize a device for its operating parameters. A test methodology and sample test results are presented to illustrate its use. The system is used to compare image quality and contrast detection for a range of stimulation and measurement patterns, and results show the best images when the pair of current injection electrodes is spaced between 45 and 170 degrees on a tank. Finally, we propose a classification of the object detection errors, which can facilitate comparison of EIT instrument specifications.
引用
收藏
页码:1227 / 1244
页数:18
相关论文
共 50 条
  • [1] Robust electrical impedance tomography for biological application: A mini review
    Li, Yang
    Wang, Nan
    Fan, Li-Feng
    Zhao, Peng-Fei
    Li, Jin-Hai
    Huang, Lan
    Wang, Zhong-Yi
    [J]. HELIYON, 2023, 9 (04)
  • [2] A comparison framework for temporal image reconstructions in electrical impedance tomography
    Gagnon, Herve
    Grychtol, Bartlomiej
    Adler, Andy
    [J]. PHYSIOLOGICAL MEASUREMENT, 2015, 36 (06) : 1093 - 1107
  • [3] pyEIT: A python']python based framework for Electrical Impedance Tomography
    Liu, Benyuan
    Yang, Bin
    Xu, Canhua
    Xia, Junying
    Dai, Meng
    Ji, Zhenyu
    You, Fusheng
    Dong, Xiuzhen
    Shi, Xuetao
    Fu, Feng
    [J]. SOFTWAREX, 2018, 7 : 304 - 308
  • [4] Mathematical Framework for Abdominal Electrical Impedance Tomography to Assess Fatness
    Ammari, Habib
    Kwon, Hyeuknam
    Lee, Seungri
    Seo, Jin Keun
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2017, 10 (02): : 900 - 919
  • [5] Mathematical framework for a new microscopic electrical impedance tomography system
    Lee, Eunjung
    Seo, Jin Keun
    Woo, Eung Je
    Zhang, Tingting
    [J]. INVERSE PROBLEMS, 2011, 27 (05)
  • [6] COMPUTATIONAL FRAMEWORK FOR APPLYING ELECTRICAL IMPEDANCE TOMOGRAPHY TO HEAD IMAGING
    Candiani, Valentina
    Hannukainen, Antti
    Hyvonen, Nuutti
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (05): : B1034 - B1060
  • [7] Automated Segmentation and Feature Extraction in Cardiac Electrical Impedance Tomography Images
    Arshad, Saaid H.
    Murphy, Ethan K.
    Halter, Ryan J.
    [J]. MEDICAL IMAGING 2018: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2018, 10578
  • [8] Robust imaging using electrical impedance tomography: review of current tools
    Brazey, Benoit
    Haddab, Yassine
    Zemiti, Nabil
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 478 (2258):
  • [9] A Fidelity-Embedded Regularization Method for Robust Electrical Impedance Tomography
    Lee, Kyounghun
    Woo, Eung Je
    Seo, Jin Keun
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (09) : 1970 - 1977
  • [10] A Robust Inclusion Boundary Reconstructor for Electrical Impedance Tomography With Geometric Constraints
    Ren, Shangjie
    Wang, Yu
    Liang, Guanghui
    Dong, Feng
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2019, 68 (03) : 762 - 773