OP-1011 Automatic PET image quality control using Convolutional Neural Networks

被引:0
|
作者
Pfaehler, E. [1 ]
机构
[1] Univ Augsburg, Augsburg, Germany
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
OP-1011
引用
收藏
页码:S351 / S352
页数:2
相关论文
共 50 条
  • [1] Convolutional neural networks for automatic image quality control and EARL compliance of PET images
    Elisabeth Pfaehler
    Daniela Euba
    Andreas Rinscheid
    Otto S. Hoekstra
    Josee Zijlstra
    Joyce van Sluis
    Adrienne H. Brouwers
    Constantin Lapa
    Ronald Boellaard
    EJNMMI Physics, 9
  • [2] Convolutional neural networks for automatic image quality control and EARL compliance of PET images
    Pfaehler, Elisabeth
    Euba, Daniela
    Rinscheid, Andreas
    Hoekstra, Otto S.
    Zijlstra, Josee
    van Sluis, Joyce
    Brouwers, Adrienne H.
    Lapa, Constantin
    Boellaard, Ronald
    EJNMMI PHYSICS, 2022, 9 (01)
  • [3] PET Image Super Resolution Using Convolutional Neural Networks
    Garehdaghi, Farnaz
    Meshgini, Saeed
    Afrouzian, Reza
    Farzamnia, Ali
    2019 5TH IRANIAN CONFERENCE ON SIGNAL PROCESSING AND INTELLIGENT SYSTEMS (ICSPIS 2019), 2019,
  • [4] Convolutional neural networks for improving image quality with noisy PET data
    Schaefferkoetter, Josh
    Yan, Jianhua
    Ortega, Claudia
    Sertic, Andrew
    Lechtman, Eli
    Eshet, Yael
    Metser, Ur
    Veit-Haibach, Patrick
    EJNMMI RESEARCH, 2020, 10 (01)
  • [5] Convolutional neural networks for improving image quality with noisy PET data
    Josh Schaefferkoetter
    Jianhua Yan
    Claudia Ortega
    Andrew Sertic
    Eli Lechtman
    Yael Eshet
    Ur Metser
    Patrick Veit-Haibach
    EJNMMI Research, 10
  • [6] Automatic rat brain image segmentation using triple cascaded convolutional neural networks in a clinical PET/MR
    Gao, Ya
    Li, Zaisheng
    Song, Cheng
    Li, Lei
    Li, Mengmeng
    Schmall, Jeffrey
    Liu, Hui
    Yuan, Jianmin
    Wang, Zhe
    Zeng, Tianyi
    Hu, Lingzhi
    Chen, Qun
    Zhang, Yanjun
    PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (04):
  • [7] Automatic cell image classification with convolutional neural networks
    Kim S.-H.
    Lee J.-H.
    Choi E.-Y.
    Jeon S.-T.
    Choi M.-Y.
    Jo S.-H.
    Choe S.-W.
    Transactions of the Korean Institute of Electrical Engineers, 2021, 70 (01): : 139 - 144
  • [8] MRI Quality Control Algorithm Based on Image Analysis Using Convolutional and Recurrent Neural Networks
    Shoroshov, Grigorii
    Senyukova, Olga
    Semenov, Dmitry
    Sharova, Daria
    2022 IEEE 35TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2022, : 412 - 415
  • [9] Automatic Segmentation of Retinoblastoma in Fundus Image Photography using Convolutional Neural Networks
    Ciller, Carlos
    De Zanet, Sandro Ivo S.
    Apostolopoulos, Stefanos
    Munier, Francis L.
    Wolf, Sebastian
    Thiran, Jean-Philippe
    Cuadra, Meritxell Bach
    Sznitman, Raphael
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2017, 58 (08)
  • [10] Automatic Analysis of Lesion in Cardiovascular Image using Fully Convolutional Neural Networks
    Tang, Weijia
    Zhang, Chuang
    Wu, Ming
    PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON NETWORK INFRASTRUCTURE AND DIGITAL CONTENT (IEEE IC-NIDC), 2018, : 145 - 149