Automatic Detection of Inactive Solar Cell Cracks in Electroluminescence Images

被引:0
|
作者
Spataru, Sergiu [1 ]
Hacke, Peter [2 ]
Sera, Dezso [1 ]
机构
[1] Aalborg Univ, DK-9220 Aalborg, Denmark
[2] Natl Renewable Energy Lab, Golden, CO 80401 USA
关键词
crystalline silicon; cell crack; detection; diagnosis; electroluminescence; photovoltaic module;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Inactive solar cell regions resulted from their disconnection from the electrical circuit of the cell are considered to most severe type of solar cell cracks, causing the most power loss. In this work, we propose an algorithm for automatic determination of the electroluminescence (EL) signal threshold level corresponding these inactive solar cell regions. The resulting threshold enables automatic quantification of the cracked region size and estimation of the risk of power loss in the module. We tested the algorithm for detecting inactive cell areas in standard mono and mc-Si, showing the influence of current bias level and camera exposure time on the detection. Last, we examined the correlation between the size of the detected solar cell cracks and the power loss of the module.
引用
收藏
页码:1421 / 1426
页数:6
相关论文
共 50 条
  • [1] Automatic Detection and Evaluation of Solar Cell Micro-Cracks in Electroluminescence Images Using Matched Filters
    Spataru, Sergiu
    Hacke, Peter
    Sera, Derso
    [J]. 2016 IEEE 43RD PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2016, : 1602 - 1607
  • [2] Automatic processing and solar cell detection in photovoltaic electroluminescence images
    Sovetkin, Evgenii
    Steland, Ansgar
    [J]. INTEGRATED COMPUTER-AIDED ENGINEERING, 2019, 26 (02) : 123 - 137
  • [3] Solar Cell Cracks and Finger Failure Detection Using Statistical Parameters of Electroluminescence Images and Machine Learning
    Parikh, Harsh Rajesh
    Buratti, Yoann
    Spataru, Sergiu
    Villebro, Frederik
    Reis Benatto, Gisele Alves Dos
    Poulsen, Peter B.
    Wendlandt, Stefan
    Kerekes, Tamas
    Sera, Dezso
    Hameiri, Ziv
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (24): : 1 - 15
  • [4] Automatic Finger Interruption Detection in Electroluminescence Images of Multicrystalline Solar Cells
    Tseng, Din-Chang
    Liu, Yu-Shuo
    Chou, Chang-Min
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [5] CNN based automatic detection of photovoltaic cell defects in electroluminescence images
    Akram, M. Waqar
    Li, Guiqiang
    Jin, Yi
    Chen, Xiao
    Zhu, Changan
    Zhao, Xudong
    Khaliq, Abdul
    Faheem, M.
    Ahmad, Ashfaq
    [J]. ENERGY, 2019, 189
  • [6] Solar cells defect detection in electroluminescence images
    [J]. Tan, Q.-C. (tanqc@jlu.edu.cn), 2013, Editorial Office of Chinese Optics (34):
  • [7] Deep-Learning-Based Automatic Detection of Photovoltaic Cell Defects in Electroluminescence Images
    Wang, Junjie
    Bi, Li
    Sun, Pengxiang
    Jiao, Xiaogang
    Ma, Xunde
    Lei, Xinyi
    Luo, Yongbin
    [J]. SENSORS, 2023, 23 (01)
  • [8] Quantifying Solar Cell Cracks in Photovoltaic Modules by Electroluminescence Imaging
    Spataru, Sergiu
    Hacke, Peter
    Sera, Dezso
    Glick, Stephen
    Kerekes, Tamas
    Teodorescu, Remus
    [J]. 2015 IEEE 42ND PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2015,
  • [9] Detection of Cracks in Electroluminescence Images by Fusing Deep Learning and Structural Decoupling
    Chen, Haiyong
    Wang, Shuang
    Xing, Jia
    [J]. 2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 2565 - 2569
  • [10] Fast and Robust Detection of Solar Modules in Electroluminescence Images
    Hoffmann, Mathis
    Doll, Bernd
    Talkenberg, Florian
    Brabec, Christoph J.
    Maier, Andreas K.
    Christlein, Vincent
    [J]. COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2019, PT II, 2019, 11679 : 519 - 531