A call to arms for task parallelism in multi-scale materials modeling

被引:25
|
作者
Barton, Nathan R. [1 ]
Bernier, Joel V. [1 ]
Knap, Jaroslaw [2 ]
Sunwoo, Anne J. [1 ]
Cerreta, Ellen K. [3 ]
Turner, Todd J. [4 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] USA, Res Lab, Aberdeen Proving Ground, MD 21005 USA
[3] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[4] USAF, Res Lab, Wright Patterson AFB, OH 45433 USA
关键词
solids; materials science; multiscale; plasticity; parallelization; finite element methods; POLYCRYSTAL PLASTICITY; DEFORMATION-BEHAVIOR; CRYSTAL PLASTICITY; TEXTURE; MICROSTRUCTURE; ARCHITECTURE; ORIENTATION; PREDICTION; ALGORITHM; EVOLUTION;
D O I
10.1002/nme.3071
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Simulations based on multi-scale material models enabled by adaptive sampling have demonstrated speedup factors exceeding an order of magnitude. The use of these methods in parallel computing is hampered by dynamic load imbalance, with load imbalance measurably reducing the achieved speedup. Here we discuss these issues in the context of task parallelism, showing results achieved to date and discussing possibilities for further improvement. In some cases, the task parallelism methods employed to date are able to restore much of the potential wall-clock speedup. The specific application highlighted here focuses on the connection between microstructure and material performance using a polycrystal plasticity-based multi-scale method. However, the parallel load balancing issues are germane to a broad class of multi-scale problems. Copyright (C) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:744 / 764
页数:21
相关论文
共 50 条
  • [1] Multi-scale modeling of nanocrystalline materials
    Chandra, N
    Namilae, S
    SUPERPLASTICITY IN ADVANCED MATERIALS, 2003, 447-4 : 19 - 25
  • [2] Multi-Scale Modeling and Rendering of Granular Materials
    Meng, Johannes
    Papas, Marios
    Habel, Ralf
    Dachsbacher, Carsten
    Marschner, Steve
    Gross, Markus
    Jarosz, Wojciech
    ACM TRANSACTIONS ON GRAPHICS, 2015, 34 (04):
  • [3] Multi-scale modeling in microstructure evolution of materials
    宗亚平
    郭巍
    王刚
    张芳
    材料研究与应用, 2005, (Z1) : 117 - 123
  • [4] Computational materials: Multi-scale modeling and simulation of nanostructured materials
    Gates, TS
    Odegard, GM
    Frankland, SJV
    Clancy, TC
    COMPOSITES SCIENCE AND TECHNOLOGY, 2005, 65 (15-16) : 2416 - 2434
  • [5] Adaptive multi-scale computational Modeling of composite materials
    Raghavan, P
    Ghosh, S
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2004, 5 (02): : 151 - 170
  • [6] Multi-scale modeling in damage mechanics of composite materials
    Ramesh Talreja
    Journal of Materials Science, 2006, 41 : 6800 - 6812
  • [7] Multi-scale modeling of mechanical behavior of polycrystalline materials
    Kwon, YW
    JOURNAL OF COMPUTER-AIDED MATERIALS DESIGN, 2004, 11 (01): : 43 - 57
  • [8] Multi-Scale Finite Element Modeling for Structural Materials
    Watanabe, Ikumu
    TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 2014, 100 (11): : 814 - 819
  • [9] Multi-Scale Modeling Of Materials: A Basis for Computational Design
    Cole, I. S.
    Chu, C.
    Breedon, M.
    Winkler, D.
    20TH INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION (MODSIM2013), 2013, : 726 - 732
  • [10] Multi-scale Modeling of Heterogeneous Materials and the Validation Challenge
    Pearce, Chris
    Kaczmarczyk, Lukasz
    ADVANCES IN EXPERIMENTAL MECHANICS VIII, 2011, 70 : 345 - 350