A property of weakly Krull domains

被引:1
|
作者
Anderson, DD [1 ]
Zafrullah, M
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[2] Idaho State Univ, Dept Math, Pocatello, ID 83209 USA
关键词
weakly Krull;
D O I
10.1090/S0002-9939-03-07047-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that a weakly Krull domain D satisfies (*): for every pair a, b is an element of D\{0} there is an n = n(a; b) is an element of N such that (a; b(n)) is t-invertible. For D Noetherian, D satisfies (*) if and only if every grade-one prime ideal of D is of height one. We also show that a modification of (*) can be used to characterize Noetherian domains that are one-dimensional.
引用
下载
收藏
页码:3689 / 3692
页数:4
相关论文
共 50 条
  • [1] Arithmetic of weakly Krull domains
    Hassler, W
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (03) : 955 - 968
  • [2] Weakly Krull inside factorial domains
    Anderson, DD
    Zafrullah, M
    Chang, GW
    Arithmetical Properties of Commutative Rings and Monoids, 2005, 241 : 172 - 179
  • [3] SEMIGROUP RINGS AS WEAKLY KRULL DOMAINS
    Chang, Gyu Whan
    Fadinger, Victor
    Windisch, Daniel
    PACIFIC JOURNAL OF MATHEMATICS, 2022, 318 (02) : 433 - 452
  • [4] Arithmetic of seminormal weakly Krull monoids and domains
    Geroldinger, Alfred
    Kainrath, Florian
    Reinhart, Andreas
    JOURNAL OF ALGEBRA, 2015, 444 : 201 - 245
  • [5] DIVISOR THEORIES WITH PRIMARY ELEMENTS AND WEAKLY KRULL DOMAINS
    HALTERKOCH, F
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1995, 9B (02): : 417 - 441
  • [6] The catenary degree and tameness of factorizations in weakly Krull domains
    Geroldinger, A
    FACTORIZATION IN INTEGRAL DOMAINS, 1997, 189 : 113 - 153
  • [7] Factorial domains not satisfying the Krull intersection property
    Zanardo, P
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (04) : 1717 - 1728
  • [8] On weakly-Krull domains of integer-valued polynomials
    Tamoussit, Ali
    Tartarone, Francesca
    RICERCHE DI MATEMATICA, 2024, 73 (04) : 1937 - 1944
  • [9] MERGELYAN PROPERTY FOR WEAKLY PSEUDOCONVEX DOMAINS
    FORNAESS, JE
    NAGEL, A
    MANUSCRIPTA MATHEMATICA, 1977, 22 (02) : 199 - 208
  • [10] ON KRULL DOMAINS
    MOTT, JL
    ZAFRULLAH, M
    ARCHIV DER MATHEMATIK, 1991, 56 (06) : 559 - 568