Synthetic document generator for annotation-free layout recognition

被引:4
|
作者
Raman, Natraj [1 ]
Shah, Sameena [2 ]
Veloso, Manuela [2 ]
机构
[1] JPMorgan AI Res, 25 Bank St, London E14 5JP, England
[2] JPMorgan AI Res, 383 Madison Ave, New York, NY 10017 USA
关键词
Synthetic image generation; Bayesian network; Layout analysis;
D O I
10.1016/j.patcog.2022.108660
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Analyzing the layout of a document to identify headers, sections, tables, figures etc. is critical to understanding its content. Deep learning based approaches for detecting the layout structure of document images have been promising. However, these methods require a large number of annotated examples during training, which are both expensive and time consuming to obtain. We describe here a synthetic document generator that automatically produces realistic documents with labels for spatial positions, extents and categories of the layout elements. The proposed generative process treats every physical component of a document as a random variable and models their intrinsic dependencies using a Bayesian Network graph. Our hierarchical formulation using stochastic templates allow parameter sharing between documents for retaining broad themes and yet the distributional characteristics produces visually unique samples, thereby capturing complex and diverse layouts. We empirically illustrate that a deep layout detection model trained purely on the synthetic documents can match the performance of a model that uses real documents. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] DOCUMENT RECOGNITION SYSTEM WITH LAYOUT STRUCTURE GENERATOR
    MIZUNO, M
    TSUJI, Y
    TANAKA, T
    TANAKA, H
    IWASHITA, M
    TEMMA, T
    [J]. NEC RESEARCH & DEVELOPMENT, 1991, 32 (03): : 430 - 437
  • [2] Document recognition system with layout structure generator
    Mizuno, Masaaki
    Tsuji, Yoshitake
    Tanaka, Toshiyuki
    Tanaka, Haruhiko
    Iwashita, Masao
    Temma, Tsutomu
    [J]. NEC Research and Development, 1991, 32 (03): : 430 - 437
  • [3] ASIST: Annotation-free synthetic instance segmentation and tracking by adversarial simulations
    Liu, Quan
    Gaeta, Isabella M.
    Zhao, Mengyang
    Deng, Ruining
    Jha, Aadarsh
    Millis, Bryan A.
    Mahadevan-Jansen, Anita
    Tyska, Matthew J.
    Huo, Yuankai
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 134
  • [4] Segmentation- and Annotation-Free License Plate Recognition With Deep Localization and Failure Identification
    Bulan, Orhan
    Kozitsky, Vladimir
    Ramesh, Palghat
    Shreve, Matthew
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2017, 18 (09) : 2351 - 2363
  • [5] Annotation-Free Human Sketch Quality Assessment
    Yang, Lan
    Pang, Kaiyue
    Zhang, Honggang
    Song, Yi-Zhe
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (08) : 2743 - 2764
  • [6] Annotation-free delineation of prokaryotic homology groups
    Yin, Yongze
    Ogilvie, Huw A.
    Nakhleh, Luay
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (06)
  • [7] Annotation-free prediction of microbial dioxygen utilization
    Flamholz, Avi I.
    Goldford, Joshua E.
    Richter, Philippa A.
    Larsson, Elin M.
    Jinich, Adrian
    Fischer, Woodward W.
    Newman, Dianne K.
    [J]. MSYSTEMS, 2024,
  • [8] Annotation-free discovery of functional groups in microbial communities
    Shan, Xiaoyu
    Goyal, Akshit
    Gregor, Rachel
    Cordero, Otto X.
    [J]. NATURE ECOLOGY & EVOLUTION, 2023, 7 (05) : 716 - +
  • [9] Annotation-free learning of plankton for classification and anomaly detection
    Pastore, Vito P.
    Zimmerman, Thomas G.
    Biswas, Sujoy K.
    Bianco, Simone
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [10] Annotation-Free Learning of Deep Representations for Word Spotting Using Synthetic Data and Self Labeling
    Wolf, Fabian
    Fink, Gernot A.
    [J]. DOCUMENT ANALYSIS SYSTEMS, 2020, 12116 : 293 - 308