Scalable batch-correction approach for integrating large-scale single-cell transcriptomes

被引:0
|
作者
Shen, Xilin [1 ]
Shen, Hongru [1 ]
Wu, Dan [1 ]
Feng, Mengyao [1 ]
Hu, Jiani [1 ]
Liu, Jilei [1 ]
Yang, Yichen [2 ]
Yang, Meng [2 ]
Li, Yang [2 ]
Shi, Lei [1 ]
Chen, Kexin [2 ]
Li, Xiangchun [2 ]
机构
[1] Tianjin Med Univ, Tianjin, Peoples R China
[2] Tianjin Med Univ, Canc Inst & Hosp, Tianjin, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
single cell; data integration; scalability; deep learning;
D O I
10.1093/bib/bbac327
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Integration of accumulative large-scale single-cell transcriptomes requires scalable batch-correction approaches. Here we propose Fugue, a simple and efficient batch-correction method that is scalable for integrating super large-scale single-cell transcriptomes from diverse sources. The core idea of the method is to encode batch information as trainable parameters and add it to single-cell expression profile; subsequently, a contrastive learning approach is used to learn feature representation of the additive expression profile. We demonstrate the scalability of Fugue by integrating all single cells obtained from the Human Cell Atlas. We benchmark Fugue against current state-of-the-art methods and show that Fugue consistently achieves improved performance in terms of data alignment and clustering preservation. Our study will facilitate the integration of single-cell transcriptomes at increasingly large scale.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] A universal approach for integrating super large-scale single-cell transcriptomes by exploring gene rankings
    Shen, Hongru
    Shen, Xilin
    Feng, Mengyao
    Wu, Dan
    Zhang, Chao
    Yang, Yichen
    Yang, Meng
    Hu, Jiani
    Liu, Jilei
    Wang, Wei
    Li, Yang
    Zhang, Qiang
    Yang, Jilong
    Chen, Kexin
    Li, Xiangchun
    [J]. BRIEFINGS IN BIOINFORMATICS, 2022, 23 (02)
  • [2] Generative pretraining from large-scale transcriptomes for single-cell deciphering
    Shen, Hongru
    Liu, Jilei
    Hu, Jiani
    Shen, Xilin
    Zhang, Chao
    Wu, Dan
    Feng, Mengyao
    Yang, Meng
    Li, Yang
    Yang, Yichen
    Wang, Wei
    Zhang, Qiang
    Yang, Jilong
    Chen, Kexin
    Li, Xiangchun
    [J]. ISCIENCE, 2023, 26 (05)
  • [3] Deep-learning methods for unveiling large-scale single-cell transcriptomes
    Xilin Shen
    Xiangchun Li
    [J]. Cancer Biology & Medicine, 2023, (12) : 972 - 980
  • [4] Deep-learning methods for unveiling large-scale single-cell transcriptomes
    Shen, Xilin
    Li, Xiangchun
    [J]. CANCER BIOLOGY & MEDICINE, 2023, 20 (12) : 972 - 980
  • [5] Immunology Driven by Large-Scale Single-Cell Sequencing
    Gomes, Tomas
    Teichmann, Sarah A.
    Talavera-Lopez, Carlos
    [J]. TRENDS IN IMMUNOLOGY, 2019, 40 (11) : 1011 - 1021
  • [6] Large-scale foundation model on single-cell transcriptomics
    Hao, Minsheng
    Gong, Jing
    Zeng, Xin
    Liu, Chiming
    Guo, Yucheng
    Cheng, Xingyi
    Wang, Taifeng
    Ma, Jianzhu
    Zhang, Xuegong
    Song, Le
    [J]. NATURE METHODS, 2024, 21 (08) : 1481 - 1491
  • [7] Large-scale reconstruction of cell lineages using single-cell readout of transcriptomes and CRISPR–Cas9 barcodes by scGESTALT
    Bushra Raj
    James A. Gagnon
    Alexander F. Schier
    [J]. Nature Protocols, 2018, 13 : 2685 - 2713
  • [8] Large-scale reconstruction of cell lineages using single-cell readout of transcriptomes and CRISPR-Cas9 barcodes by scGESTALT
    Raj, Bushra
    Gagnon, James A.
    Schier, Alexander F.
    [J]. NATURE PROTOCOLS, 2018, 13 (11) : 2685 - 2713
  • [9] Adversarial domain translation networks for integrating large-scale atlas-level single-cell datasets
    Jia Zhao
    Gefei Wang
    Jingsi Ming
    Zhixiang Lin
    Yang Wang
    Angela Ruohao Wu
    Can Yang
    [J]. Nature Computational Science, 2022, 2 : 317 - 330
  • [10] Adversarial domain translation networks for integrating large-scale atlas-level single-cell datasets
    Zhao, Jia
    Wang, Gefei
    Ming, Jingsi
    Lin, Zhixiang
    Wang, Yang
    Wu, Angela Ruohao
    Yang, Can
    [J]. NATURE COMPUTATIONAL SCIENCE, 2022, 2 (05): : 317 - 330