NOTES ABOUT SUBSPACE-SUPERCYCLIC OPERATORS

被引:4
|
作者
Zhang, Liang [1 ]
Zhou, Ze-Hua [1 ,2 ]
机构
[1] Tianjin Univ, Dept Math, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
来源
ANNALS OF FUNCTIONAL ANALYSIS | 2015年 / 6卷 / 02期
基金
中国国家自然科学基金;
关键词
Subspace-supercyclic; Subspace-Supercyclicity Criterion; Banach space;
D O I
10.15352/afa/06-2-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A bounded linear operator T on a Banach space X is called subspace-hypercyclic for a nonzero subspace M if orb (T, x) boolean AND M is dense in M for a vector x is an element of X, where orb(T, x) = {T(n)x : n = 0, 1, 2, ...}. Similarly, the bounded linear operator T on a Banach space X is called subspace-supercyclic for a nonzero subspace M if there exists a vector whose projective orbit intersects the subspace M in a relatively dense set. In this paper we provide a Subspace-Supercyclicity Criterion and offer two equivalent conditions of this criterion. At the same time, we also characterize other properties of subspace-supercyclic operators.
引用
收藏
页码:60 / 68
页数:9
相关论文
共 50 条
  • [1] ON SUBSPACE-SUPERCYCLIC SEMIGROUP
    El Berrag, Mohammed
    Tajmouati, Abdelaziz
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (01): : 157 - 164
  • [2] Subspace-supercyclic abelian linear semigroups
    Herzi, Salah
    Marzougui, Habib
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (04): : 1107 - 1128
  • [3] Notes about the structure of common supercyclic vectors
    Zhang, Liang
    Zhou, Ze-Hua
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 418 (01) : 336 - 343
  • [4] Notes on subspace-hypercyclic operators
    Rezaei, H.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 397 (01) : 428 - 433
  • [5] Weakly supercyclic operators
    Sanders, R
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 292 (01) : 148 - 159
  • [6] On the set of supercyclic operators
    Alves, Thiago R.
    Souza, Gustavo C.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (07) : 2483 - 2494
  • [7] On property (aω) and hypercyclic/supercyclic operators
    Akrym, Abdellah
    EL Bakkali, Abdeslam
    Faouzi, Abdelkhalek
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, (48): : 173 - 184
  • [8] $ \mathbb{C} $-supercyclic versus $ \mathbb{R}^+ $-supercyclic operators
    T. Bermúdez
    A. Bonilla
    A. Peris
    Archiv der Mathematik, 2002, 79 : 125 - 130
  • [9] C-supercyclic versus R+-supercyclic operators
    Bermúdez, T
    Bonilla, A
    Peris, A
    ARCHIV DER MATHEMATIK, 2002, 79 (02) : 125 - 130
  • [10] LIMITS OF HYPERCYCLIC AND SUPERCYCLIC OPERATORS
    HERRERO, DA
    JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 99 (01) : 179 - 190