Experimental Testing of Rocking Cross-Laminated Timber Walls with Resilient Slip Friction Joints

被引:110
|
作者
Hashemi, Ashkan [1 ]
Zarnani, Pouyan [2 ]
Masoudnia, Reza [1 ]
Quenneville, Pierre [1 ,3 ]
机构
[1] Univ Auckland, Fac Engn, Dept Civil & Environm Engn, Private Bag 92019, Auckland 1142, New Zealand
[2] Auckland Univ Technol, Sch Engn Comp & Math Sci, Dept Built Environm Engn, Struct Engn, Private Bag 92006, Auckland 1142, New Zealand
[3] Univ Auckland, Fac Engn, Dept Civil & Environm Engn, Timber Design, Private Bag 92019, Auckland 1142, New Zealand
关键词
Rocking walls; Cross-laminated timber; Resilient slip friction (RSF) joints; Self-centering; Damage avoidance; Resilience; Shear key; Wood structures; SHEAR-WALL; PERFORMANCE; CONNECTORS; DESIGN;
D O I
10.1061/(ASCE)ST.1943-541X.0001931
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Allowing a wall to rock and uplift during a seismic event can cap the forces and minimize the postevent residual damage. Slip friction connections comprised of flat steel plates sliding over each other have been experimentally tested as the hold-down connectors in timber shear walls and performed well in terms of the hysteretic behavior and the energy dissipation rate. However, the main disadvantage of these joints is the undesirable residual displacements. In recognition of this fact, a novel type of friction joint called a resilient slip friction (RSF) joint is proposed. The innovative configuration of this joint provides the energy dissipation and self-centering behavior all in one compact package. This paper describes the large-scale experimental test conducted on a rocking cross-laminated timber (CLT) wall with RSF joints as the hold-down connectors. Additionally, a series of capacity equations are presented and validated by comparing the analytical results with the experimental data. The results confirmed that this technology has the potential to provide a robust solution for seismic-resilient structures.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Cross-laminated timber rocking walls with slip-friction connections
    Fitzgerald, Dillon
    Miller, Thomas H.
    Sinha, Arijit
    Nairn, John A.
    ENGINEERING STRUCTURES, 2020, 220
  • [2] Experimental tests on cross-laminated timber joints and walls
    Flatscher, Georg
    Bratulic, Katarina
    Schickhofer, Gerhard
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-STRUCTURES AND BUILDINGS, 2015, 168 (11) : 868 - 877
  • [3] An Experimental and Analytical Study on Cross-Laminated Bamboo Rocking Walls with Friction Dampers
    Lv, Qingfang
    Han, Tongchen
    Liu, Ye
    Ding, Yi
    Lu, Yujie
    JOURNAL OF RENEWABLE MATERIALS, 2021, 9 (10) : 1757 - 1779
  • [4] Experimental Testing of a Rocking Cross-Laminated Timber Wall with Pinching-Free Connectors
    Chan, Nicholas
    Hashemi, Ashkan
    Agarwal, Setu
    Zarnani, Pouyan
    Quenneville, Pierre
    JOURNAL OF STRUCTURAL ENGINEERING, 2023, 149 (10)
  • [5] Axial slip-friction connections for cross-laminated timber
    Fitzgerald, Dillon
    Sinha, Arijit
    Miller, Thomas H.
    Nairn, John A.
    ENGINEERING STRUCTURES, 2021, 228
  • [6] Modeling techniques for post-tensioned cross-laminated timber rocking walls
    Wilson, Alex W.
    Motter, Christopher J.
    Phillips, Adam R.
    Dolan, J. Daniel
    ENGINEERING STRUCTURES, 2019, 195 : 299 - 308
  • [7] Full-Scale Shake Table Testing of Cross-Laminated Timber Rocking Shear Walls with Replaceable Components
    Blomgren, Hans-Erik
    Pei, Shiling
    Jin, Zhibin
    Powers, Josh
    Dolan, James D.
    van de Lindt, John W.
    Barbosa, Andre R.
    Huan, D.
    JOURNAL OF STRUCTURAL ENGINEERING, 2019, 145 (10)
  • [8] Simplified Dynamic Model for Post-tensioned Cross-laminated Timber Rocking Walls
    Pei, S.
    Huang, D.
    Berman, J. W.
    Wichman, S. K.
    EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 2021, 50 (03): : 845 - 862
  • [9] Seismically Resilient Self-Centering Cross-Laminated Rocking Walls with Coupling Beams
    Dowden, Daniel M.
    Tatar, Arman
    STRUCTURES CONGRESS 2019: BUILDINGS AND NATURAL DISASTERS, 2019, : 151 - 161
  • [10] Rocking Behavior of High-Aspect-Ratio Cross-Laminated Timber Shear Walls: Experimental and Numerical Investigation
    Amini, M. Omar
    van de Lindt, John W.
    Rammer, Douglas
    Pei, Shiling
    JOURNAL OF ARCHITECTURAL ENGINEERING, 2021, 27 (03)