Subspace KDA algorithm for non-linear feature extraction in face identification

被引:0
|
作者
Chen, Wen-Shen [1 ]
Yuen, Pong C. [2 ]
Lai, Jian-Huang [3 ]
机构
[1] Shenzhen Univ, Coll Math & Computat Sci, Shenzhen 518060, Peoples R China
[2] Hong Kong Baptist Univ, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R China
[3] Sun Yat Sen Univ, Dept Elect & Commun Engn, Guangzhou 510275, Guangdong, Peoples R China
来源
关键词
face identification; kernel discriminant analysis; Shannon wavelet;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Kernel discriminant analysis (KDA) method is a promising approach for non-linear feature extraction in face identification tasks. However, as a linear algorithm to address nonlinear problem, Fisher discriminant analysis (FDA) approach will not give a satisfactory performance. Moreover, FDA usually suffers from small sample size (S3) problem. To overcome these two shortcomings in FDA method, Shannon wavelet kernel based subspace FDA (SKDA) algorithm is developed in this paper. Two public databases such as FERET and CMU PIE databases are selected for evaluation. Comparing with the existing kernel based FDA-based methods, the proposed method gives superior results.
引用
收藏
页码:1106 / +
页数:2
相关论文
共 50 条
  • [1] Feature Extraction Using Linear and Non-linear Subspace Techniques
    Teixeira, Ana R.
    Tome, Ana Maria
    Lang, E. W.
    [J]. ARTIFICIAL NEURAL NETWORKS - ICANN 2009, PT II, 2009, 5769 : 115 - +
  • [2] Radial projections for non-linear feature extraction
    Perez-Jimenez, AJ
    Perez-Cortes, JC
    [J]. 16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL II, PROCEEDINGS, 2002, : 444 - 447
  • [3] Recursive subspace identification of linear and non-linear Wiener type models
    Lovera, M
    Verhaegen, R
    [J]. PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, VOLS 1 AND 2, 1996, : 1250 - 1254
  • [4] View Prediction using Manifold Learning in non-linear feature subspace
    Arif, Maliha
    Mahalanobis, Abhijit
    [J]. MIPPR 2019: PATTERN RECOGNITION AND COMPUTER VISION, 2020, 11430
  • [5] NON-LINEAR FEATURE EXTRACTION WITH A GENERAL CRITERION FUNCTION
    FUKUNAGA, K
    SHORT, RD
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1978, 24 (05) : 600 - 607
  • [6] Non-Linear Feature Extraction by Linear PCA Using Local Kernel
    Hotta, Kazuhiro
    [J]. 19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 2064 - 2067
  • [7] Non-linear dimensionality reduction techniques for unsupervised feature extraction
    De Backer, S
    Naud, A
    Scheunders, P
    [J]. PATTERN RECOGNITION LETTERS, 1998, 19 (08) : 711 - 720
  • [8] Recursive subspace identification of linear and non-linear Wiener state-space models
    Lovera, M
    Gustafsson, T
    Verhaegen, M
    [J]. AUTOMATICA, 2000, 36 (11) : 1639 - 1650
  • [9] Subspace identification for non-linear systems with measured-input non-linearities
    Lacy, SL
    Bernstein, DS
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2005, 78 (12) : 906 - 926
  • [10] Feature Extraction and Face Recognition Algorithm
    Wang, Shuang
    Cai, Hua
    Wen, Guanyu
    [J]. 2017 13TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2017,