Network Intrusion Detection System using Deep Learning

被引:70
|
作者
Ashiku, Lirim [1 ]
Dagli, Cihan [1 ]
机构
[1] Missouri Univ Sci & Technol, Dept Engn Management & Syst Engn, Rolla, MO 65401 USA
关键词
Cybersecurity; Zero-day attacks; Deep learning; Intrusion detection systems;
D O I
10.1016/j.procs.2021.05.025
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The widespread use of interconnectivity and interoperability of computing systems have become an indispensable necessity to enhance our daily activities. Simultaneously, it opens a path to exploitable vulnerabilities that go well beyond human control capability. The vulnerabilities deem cyber-security mechanisms essential to assume communication exchange. Secure communication requires security measures to combat the threats and needs advancements to security measures that counter evolving security threats. This paper proposes the use of deep learning architectures to develop an adaptive and resilient network intrusion detection system (IDS) to detect and classify network attacks. The emphasis is how deep learning or deep neural networks (DNNs) can facilitate flexible IDS with learning capability to detect recognized and new or zero-day network behavioral features, consequently ejecting the systems intruder and reducing the risk of compromise. To demonstrate the model's effectiveness, we used the UNSW-NB15 dataset, reflecting real modern network communication behavior with synthetically generated attack activities. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) Peer-review under responsibility of the scientific committee of the Complex Adaptive Systems Conference, June 2021.
引用
收藏
页码:239 / 247
页数:9
相关论文
共 50 条
  • [1] An intelligent and efficient network intrusion detection system using deep learning
    Qazi, Emad-ul-Haq
    Imran, Muhammad
    Haider, Noman
    Shoaib, Muhammad
    Razzak, Imran
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2022, 99
  • [2] An anomaly-based Network Intrusion Detection System using Deep learning
    Nguyen Thanh Van
    Tran Ngoc Thinh
    Le Thanh Sach
    [J]. 2017 INTERNATIONAL CONFERENCE ON SYSTEM SCIENCE AND ENGINEERING (ICSSE), 2017, : 210 - 214
  • [3] A Network Intrusion Detection System Using Hybrid Multilayer Deep Learning Model
    Umair, Muhammad Basit
    Iqbal, Zeshan
    Faraz, Muhammad Ahmad
    Khan, Muhammad Attique
    Zhang, Yu-Dong
    Razmjooy, Navid
    Kadry, Sefedine
    [J]. BIG DATA, 2022,
  • [4] A network intrusion detection system based on deep learning in the IoT
    Wang, Xiao
    Dai, Lie
    Yang, Guang
    [J]. JOURNAL OF SUPERCOMPUTING, 2024, 80 (16): : 24520 - 24558
  • [5] Intrusion Detection System on IoT with 5G Network Using Deep Learning
    Yadav, Neha
    Pande, Sagar
    Khamparia, Aditya
    Gupta, Deepak
    [J]. WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [6] Network intrusion detection: systematic evaluation using deep learning
    Kakade, Kiran Shrimant
    Nagalakshmi, T. J.
    Pradeep, S.
    Bapu, B. R. Tapas
    [J]. INTERNATIONAL JOURNAL OF ELECTRONIC SECURITY AND DIGITAL FORENSICS, 2024, 16 (02) : 190 - 201
  • [7] A Network Intrusion Detection System using Deep Learning against MQTT Attacks in IoT
    Mosaiyebzadeh, Fatemeh
    Araujo Rodriguez, Luis Gustavo
    Batista, Daniel Macedo
    Hirata Jr, R.
    [J]. 2021 IEEE LATIN-AMERICAN CONFERENCE ON COMMUNICATIONS (LATINCOM 2021), 2021,
  • [8] Network intrusion detection using feature fusion with deep learning
    Ayantayo, Abiodun
    Kaur, Amrit
    Kour, Anit
    Schmoor, Xavier
    Shah, Fayyaz
    Vickers, Ian
    Kearney, Paul
    Abdelsamea, Mohammed M.
    [J]. JOURNAL OF BIG DATA, 2023, 10 (01)
  • [9] A Case Study on Using Deep Learning for Network Intrusion Detection
    Fernandez, Gabriel C.
    Xu, Shouhuai
    [J]. MILCOM 2019 - 2019 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM), 2019,
  • [10] Network intrusion detection using feature fusion with deep learning
    Abiodun Ayantayo
    Amrit Kaur
    Anit Kour
    Xavier Schmoor
    Fayyaz Shah
    Ian Vickers
    Paul Kearney
    Mohammed M. Abdelsamea
    [J]. Journal of Big Data, 10