Device agnostic sleep-wake segment classification from wrist-worn accelerometry

被引:2
|
作者
Peraza, Luis R. [1 ]
Joules, Richard [1 ]
Dauvilliers, Yves [2 ]
Wolz, Robin [1 ,3 ]
机构
[1] IXICO Plc, London, England
[2] Ctr Hosp Univ, Dept Neurol, Montpellier, France
[3] Imperial Coll London, London, England
关键词
Deep learning; Parkinson's disease; wearables; clinical endpoint;
D O I
10.1109/ICHI48887.2020.9374318
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Robustness for sleep-wake segment classification from accelerometry is critical when considering deployment in clinical studies. Deployed devices may change between or within studies, which alters critical clinical endpoints and negatively impact paired analyses if inter-device robustness is not assured. Here we present a neural network algorithm, deep learning sleep (DLS), for the classification of sleep-wake segments and show its robustness to different wrist-worn devices. Our results show that DLS delivers high accuracy when predicting sleep-wake segments in inter-device cross-validation experiments.
引用
收藏
页码:463 / 465
页数:3
相关论文
共 50 条
  • [1] Validation of the Sleep-Wake Scoring of a New Wrist-Worn Sleep Monitoring Device
    Pigeon, Wilfred R.
    Taylor, Maddison
    Bui, Ashley
    Oleynk, Courteney
    Walsh, Patrick
    Bishop, Todd M.
    [J]. JOURNAL OF CLINICAL SLEEP MEDICINE, 2018, 14 (06): : 1057 - 1062
  • [2] Comparison of Sleep-Wake Classification using Electroencephalogram and Wrist-worn Multi-modal Sensor Data
    Sano, Akane
    Picard, Rosalind W.
    [J]. 2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2014, : 930 - 933
  • [3] A novel method to increase specificity of sleep-wake classifiers based on wrist-worn actigraphy
    Ryser, Franziska
    Gassert, Roger
    Werth, Esther
    Lambercy, Olivier
    [J]. CHRONOBIOLOGY INTERNATIONAL, 2023, 40 (05) : 557 - 568
  • [4] Optical wrist-worn device for sleep monitoring
    Renevey, Ph.
    Delgado-Gonzalo, R.
    Lemkaddem, A.
    Proenca, M.
    Lemay, M.
    Sola, J.
    Tarniceriu, A.
    Bertschi, M.
    [J]. EMBEC & NBC 2017, 2018, 65 : 615 - 618
  • [5] VALIDATION OF THE SLEEP-WAKE SCORING OF A NEW WRIST WORN ALERTNESS MONITORING DEVICE
    Taylor, M.
    Casey, C.
    Gorman, C.
    Bui, A.
    Oleynk, C.
    Pigeon, W. R.
    [J]. SLEEP, 2017, 40 : A288 - A288
  • [6] Comparison Between Wrist-Worn and Waist-Worn Accelerometry
    Loprinzi, Paul D.
    Smith, Brandee
    [J]. JOURNAL OF PHYSICAL ACTIVITY & HEALTH, 2017, 14 (07): : 539 - 545
  • [7] Assessment of a wrist-worn device in the detection of obstructive sleep apnea
    Ayas, NT
    Pittman, S
    MacDonald, M
    White, DP
    [J]. SLEEP MEDICINE, 2003, 4 (05) : 435 - 442
  • [8] Limits Of The Correlation Of Wrist-Worn Accelerometry With Oxygen Uptake
    Sirichana, W.
    Sail, K.
    Taylor, M.
    Wang, X.
    Barjaktarevic, I.
    Kleerup, E. C.
    Cooper, C. B.
    [J]. AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2014, 189
  • [9] Sleep classification from wrist-worn accelerometer data using random forests
    Kalaivani Sundararajan
    Sonja Georgievska
    Bart H. W. te Lindert
    Philip R. Gehrman
    Jennifer Ramautar
    Diego R. Mazzotti
    Séverine Sabia
    Michael N. Weedon
    Eus J. W. van Someren
    Lars Ridder
    Jian Wang
    Vincent T. van Hees
    [J]. Scientific Reports, 11
  • [10] Sleep classification from wrist-worn accelerometer data using random forests
    Sundararajan, Kalaivani
    Georgievska, Sonja
    te Lindert, Bart H. W.
    Gehrman, Philip R.
    Ramautar, Jennifer
    Mazzotti, Diego R.
    Sabia, Severine
    Weedon, Michael N.
    van Someren, Eus J. W.
    Ridder, Lars
    Wang, Jian
    van Hees, Vincent T.
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)