GEOMETRY OF THE INTERSECTION RING AND VANISHING RELATIONS IN THE COHOMOLOGY OF THE MODULI SPACE OF PARABOLIC BUNDLES ON A CURVE

被引:0
|
作者
Gamse, Elisheva Adina [1 ]
Weitsman, Jonathan [1 ]
机构
[1] Northeastern Univ, Dept Math, 360 Huntington Ave, Boston, MA 02115 USA
关键词
RIEMANN SURFACE; VECTOR-BUNDLES; STABLE BUNDLES; HOLOMORPHIC BUNDLES; FLAT CONNECTIONS; ALGEBRAIC CURVE; VERLINDE FORMULA; ARBITRARY RANK; CHERN CLASSES; PAIRINGS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the ring generated by the Chern classes of tautological line bundles on the moduli space of parabolic bundles of arbitrary rank on a Riemann surface. We show the Poincare duals to these Chern classes have simple geometric representatives. We use this construction to show that the ring generated by these Chern classes vanishes below the dimension of the moduli space, in analogy with the Newstead- Ramanan conjecture for stable bundles.
引用
收藏
页码:363 / 376
页数:14
相关论文
共 50 条