An Application of Renyi Entropy Segmentation In Fault Detection of Rotating Machinery

被引:0
|
作者
Popescu, Theodor D. [1 ]
Dumitrascu, Bogdan [2 ]
机构
[1] Natl Inst R&D Informat, 8-10 Averescu Ave, Bucharest 011455, Romania
[2] Dunarea de Jos Univ Galati, Galati 800008, Romania
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The paper presents a new approach for change detection in vibration signals of a rotating machine using time-frequency information content, making use of the short-term time-frequency Renyi entropy and a segmentation algorithm, based on maximum a posteriori probability (MAP) estimator. The segmentation algorithm operates on Renyi entropy, as a new space of decision. This approach enables more robust change detection in vibrating signals. Finally, we present an application of the proposed approach for a rotating machine, a pump, after the blind source separation (BSS) of the main vibration sources has been performed.
引用
收藏
页码:288 / 295
页数:8
相关论文
共 50 条
  • [1] Fault detection and diagnosis in rotating machinery
    Loparo, KA
    Afshari, N
    Abdel-Magied, M
    [J]. 1998 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5, 1998, : 2986 - 2991
  • [2] Fault detection and diagnosis of rotating machinery
    Loparo, KA
    Adams, ML
    Lin, W
    Abdel-Magied, MF
    Afshari, N
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2000, 47 (05) : 1005 - 1014
  • [3] Application of wavelet packet to fault detection in rotating machinery and simulation of matlab
    Zhang, SQ
    Zhang, JC
    Xu, H
    Cui, DY
    [J]. PROCEEDINGS OF THE THIRD INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION SCIENCE AND TECHNOLOGY, VOL 1, 2004, : 573 - 576
  • [4] Modified Hierarchical Multiscale Dispersion Entropy and its Application to Fault Identification of Rotating Machinery
    Zhou, Fuming
    Shen, Jinxing
    Yang, Xiaoqiang
    Liu, Xiaolin
    Liu, Wuqiang
    [J]. IEEE ACCESS, 2020, 8 : 161361 - 161376
  • [5] Cumulative spectrum distribution entropy for rotating machinery fault diagnosis
    Wang, Shun
    Li, Yongbo
    Noman, Khandaker
    Wang, Dong
    Feng, Ke
    Liu, Zheng
    Deng, Zichen
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 206
  • [6] An optimal lifting multiwavelet for rotating machinery fault detection
    Jiang Hongkai
    Han, Wang
    Yong, Zhou
    [J]. JOURNAL OF VIBROENGINEERING, 2014, 16 (01) : 303 - 311
  • [7] Fault detection in rotating machinery using spectral modeling
    Dietel, Franz
    Schulze, Rico
    Richter, Hendrik
    Jaekel, Jens
    [J]. MECATRONICS REM 2012, 2012, : 353 - 357
  • [8] ROTATING MACHINERY FAULT DETECTION USING EEMD AND BISPECTRUM
    Lei, Yaguo
    Zuo, Ming J.
    Hoseini, Mohammad
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 1, PTS A AND B, 2010, : 81 - 86
  • [9] Application of Deep Learning in Fault Diagnosis of Rotating Machinery
    Jiang, Wanlu
    Wang, Chenyang
    Zou, Jiayun
    Zhang, Shuqing
    [J]. PROCESSES, 2021, 9 (06)
  • [10] Application of neural networks in fault diagnosis of rotating machinery
    Qing, He
    Dongmei, Du
    [J]. Proceedings of the ASME Power Conference 2007, 2007, : 279 - 282