Multi-agent learning dynamics: A survey

被引:5
|
作者
van den Herik, H. Jaap [1 ]
Hennes, D. [1 ]
Kaisers, M. [1 ]
Tuyls, K. [1 ]
Verbeeck, K. [1 ]
机构
[1] Maastricht Univ, MICC, Adapt Agents Grp, Maastricht, Netherlands
关键词
D O I
10.1007/978-3-540-75119-9_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we compare state-of-the-art multi-agent reinforcement learning algorithms in a wide variety of games. We consider two types of algorithms: value iteration and policy iteration. Four characteristics are studied: initial conditions, parameter settings, convergence speed, and local versus global convergence. Global convergence is still difficult to achieve in practice, despite existing theoretical guarantees. Multiple visualizations are included to provide a comprehensive insight into the learning dynamics.
引用
收藏
页码:36 / +
页数:3
相关论文
共 50 条
  • [1] Evolutionary Dynamics of Multi-Agent Learning: A Survey
    Bloembergen, Daan
    Tuyls, Karl
    Hennes, Daniel
    Kaisers, Michael
    [J]. JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2015, 53 : 659 - 697
  • [2] Multi-agent reinforcement learning: A survey
    Busoniu, Lucian
    Babuska, Robert
    De Schutter, Bart
    [J]. 2006 9TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION, VOLS 1- 5, 2006, : 1133 - +
  • [3] The Dynamics of Multi-Agent Reinforcement Learning
    Dickens, Luke
    Broda, Krysia
    Russo, Alessandra
    [J]. ECAI 2010 - 19TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2010, 215 : 367 - 372
  • [4] Multi-agent deep reinforcement learning: a survey
    Sven Gronauer
    Klaus Diepold
    [J]. Artificial Intelligence Review, 2022, 55 : 895 - 943
  • [5] Deep Multi-Agent Reinforcement Learning: A Survey
    Liang, Xing-Xing
    Feng, Yang-He
    Ma, Yang
    Cheng, Guang-Quan
    Huang, Jin-Cai
    Wang, Qi
    Zhou, Yu-Zhen
    Liu, Zhong
    [J]. Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (12): : 2537 - 2557
  • [6] Multi-agent deep reinforcement learning: a survey
    Gronauer, Sven
    Diepold, Klaus
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (02) : 895 - 943
  • [7] Survey of Multi-Agent Strategy Based on Reinforcement Learning
    Chen, Liang
    Guo, Ting
    Liu, Yun-ting
    Yang, Jia-ming
    [J]. PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 604 - 609
  • [8] Multi-agent reinforcement learning for autonomous vehicles: a survey
    Dinneweth J.
    Boubezoul A.
    Mandiau R.
    Espié S.
    [J]. Autonomous Intelligent Systems, 2022, 2 (01):
  • [9] Replicator Dynamics for Multi-agent Learning: An Orthogonal Approach
    Kaisers, Michael
    Tuyls, Karl
    [J]. ADAPTIVE AND LEARNING AGENTS, 2010, 5924 : 49 - +
  • [10] Multi-agent learning
    Eduardo Alonso
    [J]. Autonomous Agents and Multi-Agent Systems, 2007, 15 : 3 - 4