Poisson-Dirichlet statistics for the extremes of the two-dimensional discrete Gaussian free field

被引:15
|
作者
Arguin, Louis-Pierre [1 ,2 ,3 ]
Zindy, Olivier [4 ]
机构
[1] Univ Montreal, Montreal, PQ H3C 3J7, Canada
[2] CUNY Bernard M Baruch Coll, New York, NY 10010 USA
[3] CUNY, Grad Ctr, New York, NY 10016 USA
[4] Univ Paris 06, F-75252 Paris 05, France
来源
关键词
Gaussian free field; Gibbs measure; Poisson-Dirichlet variable; Spin glasses; MULTIPLICATIVE CHAOS; MAXIMUM; MODELS;
D O I
10.1214/EJP.v20-3077
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In a previous paper, the authors introduced an approach to prove that the statistics of the extremes of a log-correlated Gaussian field converge to a Poisson-Dirichlet variable at the level of the Gibbs measure at low temperature and under suitable test functions. The method is based on showing that the model admits a one-step replica symmetry breaking in spin glass terminology. This implies Poisson-Dirichlet statistics by general spin glass arguments. In this note, this approach is used to prove Poisson-Dirichlet statistics for the two-dimensional discrete Gaussian free field, where boundary effects demand a more delicate analysis.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
  • [1] POISSON-DIRICHLET STATISTICS FOR THE EXTREMES OF A LOG-CORRELATED GAUSSIAN FIELD
    Arguin, Louis-Pierre
    Zindy, Olivier
    [J]. ANNALS OF APPLIED PROBABILITY, 2014, 24 (04): : 1446 - 1481
  • [2] Extremes of the discrete two-dimensional Gaussian free field
    Daviaud, Olivier
    [J]. ANNALS OF PROBABILITY, 2006, 34 (03): : 962 - 986
  • [3] Poisson-Dirichlet statistics for the extremes of a randomized Riemann zeta function*
    Ouimet, Frederic
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2018, 23
  • [4] EXTREME VALUES FOR TWO-DIMENSIONAL DISCRETE GAUSSIAN FREE FIELD
    Ding, Jian
    Zeitouni, Ofer
    [J]. ANNALS OF PROBABILITY, 2014, 42 (04): : 1480 - 1515
  • [5] Ballot Theorems for the Two-Dimensional Discrete Gaussian Free Field
    Stephan Gufler
    Oren Louidor
    [J]. Journal of Statistical Physics, 2022, 189
  • [6] Ballot Theorems for the Two-Dimensional Discrete Gaussian Free Field
    Gufler, Stephan
    Louidor, Oren
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2022, 189 (01)
  • [7] Contour lines of the two-dimensional discrete Gaussian free field
    Schramm, Oded
    Sheffield, Scott
    [J]. ACTA MATHEMATICA, 2009, 202 (01) : 21 - 137
  • [8] Extremes of the two-dimensional Gaussian free field with scale-dependent variance
    Arguin, Louis-Pierre
    Ouimet, Frederic
    [J]. ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2016, 13 (02): : 779 - 808
  • [9] Near-maxima of the two-dimensional discrete Gaussian free field
    Biskup, Marek
    Gufler, Stephan
    Louidor, Oren
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (01): : 281 - 311
  • [10] Percolation for two-dimensional excursion clouds and the discrete Gaussian free field
    Drewitz, A.
    Elias, O.
    Prevost, A.
    Tykesson, J.
    Viklund, F.
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29 : 1 - 54