A New Approach for Semi-supervised Fuzzy Clustering with Multiple Fuzzifiers

被引:4
|
作者
Tran Manh Tuan [1 ]
Mai Dinh Sinh [2 ]
Tran Dinh Khang [3 ]
Phung The Huan [4 ]
Tran Thi Ngan [1 ]
Nguyen Long Giang [5 ]
Vu Duc Thai [4 ]
机构
[1] Thuyloi Univ, Fac Comp Sci & Engn, Hanoi, Vietnam
[2] Le Quy Don Tech Univ, Inst Tech Special Engn, Hanoi, Vietnam
[3] Hanoi Univ Sci & Technol, Sch Informat & Commun Technol, Hanoi, Vietnam
[4] Thai Nguyen Univ, Univ Informat & Commun Technol, Thainguyen, Vietnam
[5] Vietnam Acad Sci & Technol, Inst Informat Technol, Hanoi, Vietnam
关键词
Data clustering; Fuzzy clustering; Semi-supervised fuzzy clustering; Multiple fuzzifiers; CLASSIFICATION; SEGMENTATION; OPTIMIZATION; FRAMEWORK;
D O I
10.1007/s40815-022-01363-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Data clustering is the process of dividing data elements into different clusters in which elements in one cluster have more similarity than those in other clusters. Semi-supervised fuzzy clustering methods are used in various applications. The available methods are based on fuzzy C-Mean, kernel function, weight function and adaptive function. The fuzzification coefficient is an important factor that affects to the performance in these methods. In this paper, we propose the improvements of semi-supervised standard fuzzy C-Mean clustering (SSFCM) by using multiple fuzzifiers to increase clusters quality. Two proposed models, named as MCSSFC-P and MCSSFC-C, use different fuzzifiers for each data point and for each cluster, respectively, which are established in a form of optimal problems. The values of fuzzifiers are updated to get the best values of objective functions. Evaluations on different datasets are performed. The numerical results show the higher performance of our model than some related models.
引用
收藏
页码:3688 / 3701
页数:14
相关论文
共 50 条
  • [1] A New Approach for Semi-supervised Fuzzy Clustering with Multiple Fuzzifiers
    Tran Manh Tuan
    Mai Dinh Sinh
    Tran Đinh Khang
    Phung The Huan
    Tran Thi Ngan
    Nguyen Long Giang
    Vu Duc Thai
    [J]. International Journal of Fuzzy Systems, 2022, 24 : 3688 - 3701
  • [2] Fast Semi-Supervised Fuzzy Clustering :Approach and Application
    Cai, Jia-xin
    Yang, Feng
    Feng, Guo-can
    [J]. PROCEEDINGS OF THE 2009 CHINESE CONFERENCE ON PATTERN RECOGNITION AND THE FIRST CJK JOINT WORKSHOP ON PATTERN RECOGNITION, VOLS 1 AND 2, 2009, : 108 - +
  • [3] A New Approach for Semi-Supervised Clustering Based on Fuzzy C-Means
    Macario, Valmir
    de Carvalho, Francisco de A. T.
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [4] Active semi-supervised fuzzy clustering
    Grira, Nizar
    Crucianu, Michel
    Boujemaa, Nozha
    [J]. PATTERN RECOGNITION, 2008, 41 (05) : 1834 - 1844
  • [5] Evolutionary semi-supervised fuzzy clustering
    Liu, H
    Huang, ST
    [J]. PATTERN RECOGNITION LETTERS, 2003, 24 (16) : 3105 - 3113
  • [6] Weighted Semi-supervised Fuzzy Clustering
    Kong, Yi-qing
    Wang, Shi-tong
    [J]. FUZZY INFORMATION AND ENGINEERING, VOL 1, 2009, 54 : 465 - 470
  • [7] A genetic semi-supervised fuzzy clustering approach to text classification
    Liu, H
    Huang, ST
    [J]. ADVANCES IN WEB-AGE INFORMATION MANAGEMENT, PROCEEDINGS, 2003, 2762 : 173 - 180
  • [8] Semi-supervised fuzzy clustering: A kernel-based approach
    Zhang, Huaxiang
    Lu, Jing
    [J]. KNOWLEDGE-BASED SYSTEMS, 2009, 22 (06) : 477 - 481
  • [9] A Novel Multiple Kernel Learning Approach for Semi-Supervised Clustering
    Zare, T.
    Sadeghi, M. T.
    Abutalebi, H. R.
    [J]. 2013 8TH IRANIAN CONFERENCE ON MACHINE VISION & IMAGE PROCESSING (MVIP 2013), 2013, : 451 - 456
  • [10] Multiple kernel "approach to semi-supervised fuzzy clustering algorithm for land-cover classification
    Sinh Dinh Mai
    Long Thanh Ngo
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2018, 68 : 205 - 213