Deep Double Center Hashing for Face Image Retrieval

被引:0
|
作者
Fu, Xin [1 ]
Wang, Wenzhong [1 ]
Tang, Jin [1 ]
机构
[1] Anhui Univ, Sch Comp Sci & Technol, Hefei, Peoples R China
关键词
Image retrieval; Deep hashing; Deep learning; QUANTIZATION;
D O I
10.1007/978-3-030-88007-1_52
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hashing is an effective and widely used technology for fast approximate nearest neighbor search in large-scale images. In recent years, it has been combined with a powerful feature learning model, convolutional neural network(CNN), to boost the efficiency of large-scale image retrieval. In this paper, we introduce a new Deep Double Center Hashing (DDCH) network to learn hash codes with higher discrimination between different people and compact hash codes between the same person for large-scale face image retrieval. Our method uses a deep neural network to learn image features as well as hash codes. We use a deep CNN to extract image features and a multi-layer neural network as the hash function. The whole model is trained end-to-end. In order to learn compact and discriminative hash codes, we impose a compact constraint on the codes to force lower intra-class variations of the codes. Our constraint is formulated as a center-loss over the learned codes, which encourages hash codes to be near the hash center of the same class. In addition, new discrete hashing modules and multi-scale fusion are designed to capture discriminative and multi-scale information. We conduct experiments on the most popular datasets, YouTubeFaces and FaceScrub, and demonstrates the efficient performance of DDCH over the state-of-the-art face image hashing methods.
引用
收藏
页码:636 / 648
页数:13
相关论文
共 50 条
  • [1] Discriminative Deep Hashing for Scalable Face Image Retrieval
    Lin, Jie
    Li, Zechao
    Tang, Jinhui
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2266 - 2272
  • [2] Discriminative Deep Quantization Hashing for Face Image Retrieval
    Tang, Jinhui
    Lin, Jie
    Li, Zechao
    Yang, Jian
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (12) : 6154 - 6162
  • [3] Supervised deep hashing for scalable face image retrieval
    Tang, Jinhui
    Li, Zechao
    Zhu, Xiang
    PATTERN RECOGNITION, 2018, 75 : 25 - 32
  • [4] Deep center-based dual-constrained hashing for discriminative face image retrieval
    Zhang, Ming
    Zhe, Xuefei
    Chen, Shifeng
    Yan, Hong
    PATTERN RECOGNITION, 2021, 117
  • [5] Deep Clustering and Block Hashing Network for Face Image Retrieval
    Jang, Young Kyun
    Jeong, Dong-ju
    Lee, Seok Hee
    Cho, Nam Ik
    COMPUTER VISION - ACCV 2018, PT VI, 2019, 11366 : 325 - 339
  • [6] DEEP HASHING WITH HASH CENTER UPDATE FOR EFFICIENT IMAGE RETRIEVAL
    Jose, Abin
    Filbert, Daniel
    Rohlfing, Christian
    Ohm, Jens-Rainer
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 4773 - 4777
  • [7] Discriminative Deep Attention-Aware Hashing for Face Image Retrieval
    Xiong, Zhi
    Li, Bo
    Gu, Xiaoyan
    Gu, Wen
    Wang, Weiping
    PRICAI 2019: TRENDS IN ARTIFICIAL INTELLIGENCE, PT I, 2019, 11670 : 244 - 256
  • [8] Deep Transfer Hashing for Image Retrieval
    Zhai, Hongjia
    Lai, Shenqi
    Jin, Hanyang
    Qian, Xueming
    Mei, Tao
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (02) : 742 - 753
  • [9] Hierarchical deep hashing for image retrieval
    Ge Song
    Xiaoyang Tan
    Frontiers of Computer Science, 2017, 11 : 253 - 265
  • [10] Deep Progressive Hashing for Image Retrieval
    Bai, Jiale
    Ni, Bingbing
    Wang, Minsi
    Li, Zefan
    Cheng, Shuo
    Yang, Xiaokang
    Hu, Chuanping
    Gao, Wen
    IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (12) : 3178 - 3193