Kinetics of the OCN- and HOCN formation from the HNCO + H2O thermal reaction in interstellar ice analogs

被引:37
|
作者
Theule, P. [1 ]
Duvernay, F. [1 ]
Ilmane, A. [1 ]
Hasegawa, T. [2 ]
Morata, O. [2 ]
Coussan, S. [1 ]
Danger, G. [1 ]
Chiavassa, T. [1 ]
机构
[1] Univ Aix Marseille 1, Ctr St Jerome, Lab Phys Interact Ion & Mol, F-13397 Marseille, France
[2] NTU, Acad Sinica, Inst Astron & Astrophys, Taipei, Taiwan
关键词
astrochemistry; ISM: molecules; molecular processes; molecular data; TIME-DEPENDENT CHEMISTRY; DENSE MOLECULAR CLOUDS; INFRARED-SPECTROSCOPY; ICES; REACTIVITY; EVOLUTION; BAND; ION;
D O I
10.1051/0004-6361/201016051
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Aims. We study in the laboratory the kinetics of the low-temperature OCN- and HOCN formation from the purely thermal reaction of solid HNCO and H2O. The cyanate ion OCN- is an intermediate in the isomerization process of isocyanic acid HNCO into cyanic acid HOCN in water ice. Methods. We study the reaction, isomerization and desorption kinetics of the HNCO/OCN-/HOCN system using Fourier transform infrared spectroscopy. Results. Activation energies of 26 +/- 2 kJ mol(-1) (3127 K) and 36 +/- 1 kJ mol(-1) (4330 K) are found for the HNCO + H2O -> OCN- + H3O+ and OCN- + H3O+ -> HOCN + H2O reactions respectively. Desorption energies of 37 +/- 3 kJ mol(-1) (4450 K) and 40 +/- 3 kJ mol(-1) (4811 K) are measured for HNCO and OCN-, respectively. Conclusions. The present experiment has the important implication that the H2O + HNCO reaction alone cannot account for the observed abundances of solid OCN- in astronomical IR sources.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] A quantitative analysis of OCN- formation in interstellar ice analogs
    van Broekhuizen, FA
    Keane, JV
    Schutte, WA
    ASTRONOMY & ASTROPHYSICS, 2004, 415 (02) : 425 - 436
  • [2] The formation of cyanate ion (OCN-) in interstellar ice analogs
    Hudson, RL
    Moore, MH
    Gerakines, PA
    ASTROPHYSICAL JOURNAL, 2001, 550 (02): : 1140 - 1150
  • [3] Kinetics of OCN- formation from the HNCO + NH3 solid-state thermal reaction
    Mispelaer, F.
    Theule, P.
    Duvernay, F.
    Roubin, P.
    Chiavassa, T.
    ASTRONOMY & ASTROPHYSICS, 2012, 540
  • [4] Experimental and theoretical study on the spontaneous formation of OCN- ion:: reactivity between HNCO and NH3/H2O environment at low temperature
    Raunier, S
    Chiavassa, T
    Marinelli, F
    Aycard, JP
    CHEMICAL PHYSICS, 2004, 302 (1-3) : 259 - 264
  • [5] Entrapment of Hypervolatiles in Interstellar and Cometary H2O and CO2 Ice Analogs
    Simon, Alexia
    Rajappan, Mahesh
    Oberg, Karin I.
    ASTROPHYSICAL JOURNAL, 2023, 955 (01):
  • [6] Simultaneous hydrogenation and UV-photolysis experiments of NO in CO-rich interstellar ice analogues; linking HNCO, OCN-, NH2CHO, and NH2OH
    Fedoseev, G.
    Chuang, K. -J.
    van Dishoeck, E. F.
    Ioppolo, S.
    Linnartz, H.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 460 (04) : 4297 - 4309
  • [7] Ultraviolet photolysis of anthracene in H2O interstellar ice analogs:: Potential connection to meteoritic organics
    Ashbourn, Samantha F. M.
    Elsila, Jamie E.
    Dworkin, Jason P.
    Bernstein, Max P.
    Sandford, Scott A.
    Allamandola, Louis J.
    METEORITICS & PLANETARY SCIENCE, 2007, 42 (12) : 2035 - 2041
  • [8] HBr uptake on ice:: Uptake coefficient, H2O/HBr hydrate formation, and H2O desorption kinetics
    Hudson, PK
    Foster, KL
    Tolbert, MA
    George, SM
    Carlo, SR
    Grassian, VH
    JOURNAL OF PHYSICAL CHEMISTRY A, 2001, 105 (04): : 694 - 702
  • [9] Role of quantum tunneling for the formation of H2O by reaction of H2 with OH on interstellar grains
    Oba, Yasuhiro
    Watanabe, Naoki
    Hama, Tetsuya
    Kuwahata, Kazuaki
    Hidaka, Hiroshi
    Kouchi, Akira
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [10] Isomer-specific kinetics of the C+ + H2O reaction at the temperature of interstellar clouds
    Yang, Tiangang
    Li, Anyang
    Chen, Gary K.
    Yao, Qian
    Suits, Arthur G.
    Guo, Hua
    Hudson, Eric R.
    Campbell, Wesley C.
    SCIENCE ADVANCES, 2021, 7 (02)