Interlaboratory Reproducibility of Contour Method Data Analysis and Residual Stress Calculation

被引:5
|
作者
D'Elia, C. [1 ]
Carlson, S. [2 ]
Stanfield, M. [2 ]
Prime, M. [3 ]
Araujo de Oliveira, J. [4 ]
Spradlin, T. [5 ]
Levesque, J. [6 ]
Hill, M. [1 ]
机构
[1] Univ Calif Davis, Dept Mech & Aerosp Engn, One Shields Ave, Davis, CA 95616 USA
[2] Southwest Res Inst SwRI, Mech Engn, Aerosp Struct Sect, 6220 Culebra Rd, San Antonio, TX 78238 USA
[3] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[4] Open Univ, StressMap Engn & Innovat, N2024,Venables Bldg,Walton Hall, Milton Keynes MK7 6AA, Bucks, England
[5] US Air Force, Res Lab, 2790 D St, Fairborn, OH 45433 USA
[6] Hydro Quebec Res Inst, 1800 Lionel Boulet, Varennes, PQ J3X 1S1, Canada
关键词
Contour method; Residual stress; Reproducibility; Precision; Uncertainty;
D O I
10.1007/s11340-020-00599-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Background: While the contour method for residual stress assessment has developed rapidly, no published study documents its interlaboratory reproducibility. Objective: Here we report an initial reproducibility experiment focused on contour method data analysis and residual stress calculation. Methods: The experiment uses surface topography data from a physical process simulation of elastic-plastic beam bending. The simulation provides surface topography, for input to the contour method data analysis, as well as a known residual stress field with 130 MPa peak magnitude. To increase realism, noise and specific artifacts are added to the topography data. A group of participants received the topography data (without the known residual stress), independently analyzed the data, and submitted results as a two-dimensional residual stress field. Results: Analysis of submissions provides a group average residual stress field and the spatial distribution of reproducibility standard deviation. The group average residual stress agrees with the known stress in magnitude and spatial trend. The reproducibility standard deviation ranges from 2 to 54 MPa over the measurement plane, with an average of 5.4 MPa. Reproducibility standard deviation is smaller in the cross-section interior (<= 5 MPa), modest near local extrema in the stress field (5 to 10 MPa), and larger near the cross-section boundaries (10 to 30 MPa). The largest values of reproducibility standard deviation (up to 54 MPa) occur in limited areas where artifacts had been added to the topography data; while some participants identified and removed these artifacts, some did not, leading to systematic differences that elevated the standard deviation.
引用
收藏
页码:833 / 845
页数:13
相关论文
共 50 条
  • [1] Interlaboratory Reproducibility of Contour Method Data Analysis and Residual Stress Calculation
    C. R. D’Elia
    S. S. Carlson
    M. L. Stanfield
    M. B. Prime
    J. Araújo de Oliveira
    T. J. Spradlin
    J. B. Lévesque
    M. R. Hill
    Experimental Mechanics, 2020, 60 : 833 - 845
  • [2] Correction to: Interlaboratory Reproducibility of Contour Method Data Analysis and Residual Stress Calculation
    C. R. D’Elia
    S. S. Carlson
    M. L. Stanfield
    M. B. Prime
    J. Araújo de Oliveira
    T. J. Spradlin
    J. B. Lévesque
    M. R. Hill
    Experimental Mechanics, 2020, 60 : 1033 - 1033
  • [3] Interlaboratory Reproducibility of Contour Method Data Analysis and Residual Stress Calculation (vol 76, pg 623, 2020)
    D'Elia, C. R.
    Carlson, S. S.
    Stanfield, M. L.
    Prime, M. B.
    Araujo de Oliveira, J.
    Spradlin, T. J.
    Levesque, J. B.
    Hill, M. R.
    EXPERIMENTAL MECHANICS, 2020, 60 (07) : 1033 - 1033
  • [4] Interlaboratory Reproducibility of Contour Method Data in a High Strength Aluminum Alloy
    D'Elia, C. R.
    Carlone, P.
    Dyer, J. W.
    Levesque, J. B.
    de Oliveira, J. Araujo
    Prime, M. B.
    Roy, M. J.
    Spradlin, T. J.
    Stilwell, R.
    Tucci, F.
    Vasileiou, A. N.
    Watanable, B. T.
    Hill, M. R.
    EXPERIMENTAL MECHANICS, 2022, 62 (08) : 1319 - 1331
  • [5] Interlaboratory Reproducibility of Contour Method Data in a High Strength Aluminum Alloy
    C. R. D’Elia
    P. Carlone
    J. W. Dyer
    J. B. Lévesque
    J. Araújo de Oliveira
    M. B. Prime
    M. J. Roy
    T. J. Spradlin
    R. Stilwell
    F. Tucci
    A. N. Vasileiou
    B. T. Watanable
    M. R. Hill
    Experimental Mechanics, 2022, 62 : 1319 - 1331
  • [6] Open Source Contour Method Analysis for Assessing Residual Stress in Weldments
    Roy, M. J.
    Stoyanov, N.
    Moat, R. J.
    CHALLENGES IN MECHANICS OF BIOLOGICAL SYSTEMS AND MATERIALS, THERMOMECHANICS AND INFRARED IMAGING, TIME DEPENDENT MATERIALS AND RESIDUAL STRESS, VOL 2, 2023, 2024, : 21 - 29
  • [7] Repeatability of the Contour Method for Residual Stress Measurement
    Hill, M. R.
    Olson, M. D.
    EXPERIMENTAL MECHANICS, 2014, 54 (07) : 1269 - 1277
  • [8] Repeatability of the Contour Method for Residual Stress Measurement
    M. R. Hill
    M. D. Olson
    Experimental Mechanics, 2014, 54 : 1269 - 1277
  • [9] Plasticity in the contour method of residual stress measurement
    Traore, Yeli
    Hosseinzadeh, Foroogh
    Bouchard, P. John
    RESIDUAL STRESSES IX, 2014, 996 : 337 - 342
  • [10] Estimation of Uncertainty for Contour Method Residual Stress Measurements
    Olson, M. D.
    DeWald, A. T.
    Prime, M. B.
    Hill, M. R.
    EXPERIMENTAL MECHANICS, 2015, 55 (03) : 577 - 585