Bootstrap methods for median regression models

被引:123
|
作者
Horowitz, JL [1 ]
机构
[1] Univ Iowa, Dept Econ, Iowa City, IA 52242 USA
关键词
asymptotic expansion; smoothing; L-1; regression; least absolute deviations;
D O I
10.2307/2999619
中图分类号
F [经济];
学科分类号
02 ;
摘要
The least-absolute-deviations (LAD) estimator for a median-regression model does not satisfy the standard conditions for obtaining asymptotic refinements through use of the bootstrap because the LAD objective function is not smooth. This paper overcomes this problem by smoothing the objective function. The smoothed estimator is asymptotically equivalent to the standard LAD estimator. With bootstrap critical values, the rejection probabilities of symmetrical t and chi(2) tests based on the smoothed estimator are correct through O(n(-gamma)) under the null hypothesis, where gamma < 1 but can be arbitrarily close to I. In contrast, first-order asymptotic approximations make errors of size O(n(-gamma)). These results also hold for symmetrical t and chi(2) tests for censored median regression models.
引用
收藏
页码:1327 / 1351
页数:25
相关论文
共 50 条
  • [1] Fast cluster bootstrap methods for linear regression models
    MacKinnon, James G.
    ECONOMETRICS AND STATISTICS, 2023, 26 : 52 - 71
  • [2] On the bootstrap in misspecified regression models
    Velilla, S
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2001, 36 (02) : 227 - 242
  • [3] Methods of Statistical Inference for Median Regression Models with Doubly Censored Data
    Zhou, Xiuqing
    Shi, Ningzhong
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2010, 39 (17) : 3140 - 3152
  • [4] BOOTSTRAP METHODS FOR THE SLOPE OF A REGRESSION LINE
    Maros, Bohumil
    Travnicek, Tomas
    APLIMAT 2007 - 6TH INTERNATIONAL CONFERENCE, PT I, 2007, : 429 - 434
  • [5] Bootstrap hypothesis testing in regression models
    Paparoditis, E
    Politis, DN
    STATISTICS & PROBABILITY LETTERS, 2005, 74 (04) : 356 - 365
  • [6] Introducing bootstrap methods to investigate coefficient non-stationarity in spatial regression models
    Harris, Paul
    Brunsdon, Chris
    Lu, Binbin
    Nakaya, Tomoki
    Charlton, Martin
    SPATIAL STATISTICS, 2017, 21 : 241 - 261
  • [7] Bootstrap methods for comparing independent regression slopes
    Ng, Marie
    Wilcox, Rand R.
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2012, 65 (02): : 282 - 301
  • [8] BOOTSTRAP ACCURACY FOR NONLINEAR-REGRESSION MODELS
    ROY, T
    JOURNAL OF CHEMOMETRICS, 1994, 8 (01) : 37 - 44
  • [9] BOOTSTRAP TOLERANCE INTERVALS FOR LINEAR REGRESSION MODELS
    Abdel-Karim, Amany Hassan
    ADVANCES AND APPLICATIONS IN STATISTICS, 2023, 87 (02) : 139 - 159
  • [10] Bootstrap Tests for Overidentification in Linear Regression Models
    Davidson, Russell
    MacKinnon, James G.
    ECONOMETRICS, 2015, 3 (04): : 825 - 863