Wind Power Uncertainty Modeling Considering Spatial Dependence Based on Pair-copula Theory

被引:0
|
作者
Lu, Qiuyu [1 ]
Hu, Wei [1 ]
Min, Yong [1 ]
Yuan, Fei
Gao, Zonghe
机构
[1] Tsinghua Univ, Dept Elect Engn, State Key Lab Power Syst, Beijing 100084, Peoples R China
关键词
wind power uncertainty; Pair-copula; D-Vine decomposition; spatial dependence; wind power scenario generation; GENERATION;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Wind power uncertainty modeling forms the foundation of stochastic optimization problems in wind power integration. Due to the similarity of meteorological conditions, outputs of adjacent wind farms have a natural consistency, as well as the forecast errors. Therefore, spatial dependence is imperative for joint wind power uncertainty model, especially for power flow optimizations and transmission risk assessments. The Pair-copula theory is introduced in this paper to construct the spatial relevance for multiple wind farms. The detailed modeling procedure, including model selection, parameter fitting, goodness-of-fit testing and random scenario generation, are explicitly presented. Simulation results show that Pair-copula is flexible in high dimension correlation analyses and can effectively improve the model accuracy.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Probabilistic optimal power flow considering dependences of wind speed among wind farms by pair-copula method
    Cao, Jia
    Yan, Zheng
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2017, 84 : 296 - 307
  • [2] Pair-copula constructions of multiple dependence
    Aas, Kjersti
    Czado, Claudia
    Frigessi, Arnoldo
    Bakken, Henrik
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2009, 44 (02): : 182 - 198
  • [3] Risk constrained stochastic economic dispatch considering dependence of multiple wind farms using pair-copula
    Li, M. S.
    Lin, Z. J.
    Ji, T. Y.
    Wu, Q. H.
    [J]. APPLIED ENERGY, 2018, 226 : 967 - 978
  • [4] Modeling Longitudinal Data Using a Pair-Copula Decomposition of Serial Dependence
    Smith, Michael
    Min, Aleksey
    Almeida, Carlos
    Czado, Claudia
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (492) : 1467 - 1479
  • [5] Spatial Pair-Copula Modeling of Grade in Ore Bodies: A Case Study
    Musafer, G. Nishani
    Thompson, M. Helen
    Kozan, E.
    Wolff, R. C.
    [J]. NATURAL RESOURCES RESEARCH, 2017, 26 (02) : 223 - 236
  • [6] Spatial Pair-Copula Modeling of Grade in Ore Bodies: A Case Study
    G. Nishani Musafer
    M. Helen Thompson
    E. Kozan
    R. C. Wolff
    [J]. Natural Resources Research, 2017, 26 : 223 - 236
  • [7] Modeling of spatial dependence in wind power forecast uncertainty
    Papaefthymiou, George
    Pinson, Pierre
    [J]. 2008 10TH INTERNATIONAL CONFERENCE ON PROBABILISTIC METHODS APPLIED TO POWER SYSTEMS, 2008, : 9 - +
  • [8] Modeling multivariate dependence by nonparametric pair-copula construction in composite system reliability evaluation
    Zhao, Yuan
    Liu, QingYao
    Kuang, Junwei
    Xie, Kaigui
    Du, Weiming
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2021, 124
  • [9] Dynamic Stochastic Optimal Power Flow Considering Spatial Correlation of Wind Speed Based on Simplified Pair Copula
    Luo, Jinshan
    Tian, Yuan
    Wang, Keyou
    Li, Guojie
    Wang, Ying
    Yu, Haoyang
    [J]. 2017 IEEE CONFERENCE ON ENERGY INTERNET AND ENERGY SYSTEM INTEGRATION (EI2), 2017,
  • [10] Modeling multivariate dependence by nonparametric pair-copula construction in composite system reliability evaluation
    Zhao, Yuan
    Liu, QingYao
    Kuang, Junwei
    Xie, Kaigui
    Du, Weiming
    [J]. International Journal of Electrical Power and Energy Systems, 2021, 124