Vector Symbolic Architectures for Context-Free Grammars

被引:0
|
作者
Graben, Peter Beim [1 ]
Huber, Markus [2 ]
Meyer, Werner [2 ]
Romer, Ronald [2 ]
Wolff, Matthias [2 ]
机构
[1] Bernstein Ctr Computat Neurosci, Berlin, Germany
[2] Brandenburg Tech Univ Cottbus, Dept Commun Engn, BTU, Pl Deutsch Einheit 1,Cottbus D, D-03046 Senftenberg, Germany
关键词
Geometric cognition; Formal grammars; Language processing; Vector symbolic architectures; Fock space; Explainable artificial intelligence (XAI); NEURAL-NETWORKS; REPRESENTATION; SCIENCE; SPACE;
D O I
10.1007/s12559-021-09974-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Vector symbolic architectures (VSA) are a viable approach for the hyperdimensional representation of symbolic data, such as documents, syntactic structures, or semantic frames. We present a rigorous mathematical framework for the representation of phrase structure trees and parse trees of context-free grammars (CFG) in Fock space, i.e. infinite-dimensional Hilbert space as being used in quantum field theory. We define a novel normal form for CFG by means of term algebras. Using a recently developed software toolbox, called FockBox, we construct Fock space representations for the trees built up by a CFG left-corner (LC) parser. We prove a universal representation theorem for CFG term algebras in Fock space and illustrate our findings through a low-dimensional principal component projection of the LC parser state. Our approach could leverage the development of VSA for explainable artificial intelligence (XAI) by means of hyperdimensional deep neural computation.
引用
收藏
页码:733 / 748
页数:16
相关论文
共 50 条
  • [1] Vector Symbolic Architectures for Context-Free Grammars
    Peter beim Graben
    Markus Huber
    Werner Meyer
    Ronald Römer
    Matthias Wolff
    [J]. Cognitive Computation, 2022, 14 : 733 - 748
  • [2] Context-Free Tree Grammars are as Powerful as Context-Free Jungle Grammars
    Drewes, Frank
    Engelfriett, Joost
    [J]. ACTA CYBERNETICA, 2015, 22 (02): : 373 - 392
  • [3] REDUCTION OF CONTEXT-FREE GRAMMARS
    TANIGUCHI, K
    KASAMI, T
    [J]. ELECTRONICS & COMMUNICATIONS IN JAPAN, 1969, 52 (12): : 204 - +
  • [4] CONTEXT-FREE GRAMMARS WITH MEMORY
    MORIYA, E
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 1992, E75D (06) : 847 - 851
  • [5] On translating context-free grammars into Lambek grammars
    S. L. Kuznetsov
    [J]. Proceedings of the Steklov Institute of Mathematics, 2015, 290 : 63 - 69
  • [6] Context-Free Categorical Grammars
    Bauderon, Michel
    Chen, Rui
    Ly, Olivier
    [J]. ALGEBRAIC INFORMATICS, 2009, 5725 : 160 - +
  • [7] REDUCTION OF CONTEXT-FREE GRAMMARS
    TANIGUCHI, K
    KASAMI, T
    [J]. INFORMATION AND CONTROL, 1970, 17 (01): : 92 - +
  • [8] Cooperation in context-free grammars
    Dassow, J
    Mitrana, V
    [J]. THEORETICAL COMPUTER SCIENCE, 1997, 180 (1-2) : 353 - 361
  • [9] Evolving context-free grammars
    Cyre, W
    [J]. PROCEEDINGS OF THE 6TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2002, : 643 - 646
  • [10] Pullback Grammars Are Context-Free
    Bauderon, Michel
    Chen, Rui
    Ly, Olivier
    [J]. GRAPH TRANSFORMATIONS, ICGT 2008, 2008, 5214 : 366 - +